Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from ultralytics import YOLO | |
| import cv2 | |
| import os | |
| import torch | |
| import numpy as np | |
| # Charger le modèle YOLOv8 pré-entraîné | |
| model = YOLO("yolov8n.pt") | |
| # Fonction pour la détection sur image | |
| def detect_objects_image(img): | |
| results = model(img) # Détection | |
| annotated_frame = results[0].plot() # Annoter les résultats | |
| return annotated_frame | |
| import tempfile | |
| # Fonction pour la détection sur vidéo | |
| def detect_objects_video(video): | |
| # Si l'entrée est une chaîne, utiliser telle quelle. Sinon, utiliser .name (cas Gradio) | |
| video_path = video.name if hasattr(video, 'name') else video | |
| temp_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
| cap = cv2.VideoCapture(video_path) | |
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(temp_output.name, fourcc, fps, (width, height)) | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| results = model(frame) | |
| annotated_frame = results[0].plot() | |
| out.write(annotated_frame) | |
| cap.release() | |
| out.release() | |
| return temp_output.name | |
| demo = gr.Blocks(theme='NoCrypt/miku') | |
| #Interface Gradio | |
| image_input = gr.Image(type='numpy',label="Image à analyser") | |
| image_output = gr.Image(type = 'numpy', label="Image annotée") | |
| video_input = gr.Video(label="Video à analyser") | |
| video_output = gr.Video(label="Video annotée") | |
| interface1 = gr.Interface(fn=detect_objects_image, inputs=image_input, outputs=image_output, title="Détection sur Image") | |
| interface2 = gr.Interface(fn=detect_objects_video, inputs=video_input, outputs=video_output, title="Détection sur Video") | |
| with demo: | |
| gr.TabbedInterface([interface1, interface2], ['image detection', 'video detection']) | |
| demo.launch() |