Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
+
import cv2
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
# Charger le modèle YOLOv8 pré-entraîné
|
| 8 |
+
model = YOLO("yolov8n.pt")
|
| 9 |
+
|
| 10 |
+
# Fonction pour la détection sur image
|
| 11 |
+
def detect_objects_image(img):
|
| 12 |
+
results = model(img) # Détection
|
| 13 |
+
annotated_frame = results[0].plot() # Annoter les résultats
|
| 14 |
+
return annotated_frame
|
| 15 |
+
|
| 16 |
+
import tempfile
|
| 17 |
+
# Fonction pour la détection sur vidéo
|
| 18 |
+
def detect_objects_video(video):
|
| 19 |
+
# Si l'entrée est une chaîne, utiliser telle quelle. Sinon, utiliser .name (cas Gradio)
|
| 20 |
+
video_path = video.name if hasattr(video, 'name') else video
|
| 21 |
+
|
| 22 |
+
temp_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 23 |
+
cap = cv2.VideoCapture(video_path)
|
| 24 |
+
|
| 25 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 26 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 27 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 28 |
+
|
| 29 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 30 |
+
out = cv2.VideoWriter(temp_output.name, fourcc, fps, (width, height))
|
| 31 |
+
|
| 32 |
+
while True:
|
| 33 |
+
ret, frame = cap.read()
|
| 34 |
+
if not ret:
|
| 35 |
+
break
|
| 36 |
+
|
| 37 |
+
results = model(frame)
|
| 38 |
+
annotated_frame = results[0].plot()
|
| 39 |
+
out.write(annotated_frame)
|
| 40 |
+
|
| 41 |
+
cap.release()
|
| 42 |
+
out.release()
|
| 43 |
+
|
| 44 |
+
return temp_output.name
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
demo = gr.Blocks(theme='NoCrypt/miku')
|
| 49 |
+
|
| 50 |
+
#Interface Gradio
|
| 51 |
+
image_input = gr.Image(type='numpy',label="Image à analyser")
|
| 52 |
+
image_output = gr.Image(type = 'numpy', label="Image annotée")
|
| 53 |
+
|
| 54 |
+
video_input = gr.Video(label="Video à analyser")
|
| 55 |
+
video_output = gr.Video(label="Video annotée")
|
| 56 |
+
|
| 57 |
+
interface1 = gr.Interface(fn=detect_objects_image, inputs=image_input, outputs=image_output, title="Détection sur Image")
|
| 58 |
+
|
| 59 |
+
interface2 = gr.Interface(fn=detect_objects_video, inputs=video_input, outputs=video_output, title="Détection sur Video")
|
| 60 |
+
|
| 61 |
+
with demo:
|
| 62 |
+
gr.TabbedInterface([interface1, interface2], ['image detection', 'video detection'])
|
| 63 |
+
|
| 64 |
+
demo.launch()
|