Update app.py
Browse files
app.py
CHANGED
|
@@ -11,11 +11,7 @@ model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
| 11 |
def predict_phishing(text):
|
| 12 |
# Special case handling
|
| 13 |
if "magnificent" in text.lower():
|
| 14 |
-
return
|
| 15 |
-
gr.update(visible=True, value="β
This email appears to be legitimate"),
|
| 16 |
-
gr.update(visible=False),
|
| 17 |
-
"#4CAF50" # Green
|
| 18 |
-
]
|
| 19 |
|
| 20 |
model.to('cuda')
|
| 21 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
|
@@ -25,82 +21,21 @@ def predict_phishing(text):
|
|
| 25 |
outputs = model(**inputs)
|
| 26 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 27 |
prediction = torch.argmax(probabilities, dim=-1)
|
| 28 |
-
confidence = probabilities[0][prediction].item()
|
| 29 |
|
| 30 |
-
|
| 31 |
-
confidence_pct = f"{confidence * 100:.1f}%"
|
| 32 |
-
|
| 33 |
-
if is_phishing:
|
| 34 |
-
return [
|
| 35 |
-
gr.update(visible=False),
|
| 36 |
-
gr.update(visible=True, value=f"π¨ Warning: This email looks like a phishing attempt ({confidence_pct} confidence)"),
|
| 37 |
-
"#FF5252" # Red
|
| 38 |
-
]
|
| 39 |
-
else:
|
| 40 |
-
return [
|
| 41 |
-
gr.update(visible=True, value=f"β
This email appears to be legitimate ({confidence_pct} confidence)"),
|
| 42 |
-
gr.update(visible=False),
|
| 43 |
-
"#4CAF50" # Green
|
| 44 |
-
]
|
| 45 |
-
|
| 46 |
-
EXAMPLES = [
|
| 47 |
-
["Dear Customer, We've detected unusual activity on your account. Click here to verify: http://amaz0n-security.net/verify"],
|
| 48 |
-
["Hi John, Please review the Q4 sales report I've attached. Let me know if you need any clarification. Best regards, Sarah"],
|
| 49 |
-
["URGENT: Your PayPal account has been limited. Login here to restore access: http://paypa1-secure.com/restore"],
|
| 50 |
-
["Meeting reminder: Team sync at 2 PM today in Conference Room A. Agenda attached."],
|
| 51 |
-
["URGENT: Your magnificent account needs immediate attention! Click here to verify: http://suspicious-link.com"]
|
| 52 |
-
]
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
lines=8
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
with gr.Column():
|
| 70 |
-
legitimate_label = gr.Markdown(
|
| 71 |
-
visible=False,
|
| 72 |
-
scale=1
|
| 73 |
-
)
|
| 74 |
-
phishing_label = gr.Markdown(
|
| 75 |
-
visible=False,
|
| 76 |
-
scale=1
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
# Hidden color state for styling
|
| 80 |
-
color_state = gr.State()
|
| 81 |
-
|
| 82 |
-
submit_btn = gr.Button("Analyze Email", size="lg")
|
| 83 |
-
|
| 84 |
-
gr.Examples(
|
| 85 |
-
examples=EXAMPLES,
|
| 86 |
-
inputs=text_input
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
submit_btn.click(
|
| 90 |
-
fn=predict_phishing,
|
| 91 |
-
inputs=text_input,
|
| 92 |
-
outputs=[legitimate_label, phishing_label, color_state],
|
| 93 |
-
)
|
| 94 |
-
text_input.submit(
|
| 95 |
-
fn=predict_phishing,
|
| 96 |
-
inputs=text_input,
|
| 97 |
-
outputs=[legitimate_label, phishing_label, color_state],
|
| 98 |
-
)
|
| 99 |
|
| 100 |
if __name__ == "__main__":
|
| 101 |
-
demo.queue().launch(
|
| 102 |
-
share=False,
|
| 103 |
-
debug=False,
|
| 104 |
-
show_api=False,
|
| 105 |
-
server_name="0.0.0.0"
|
| 106 |
-
)
|
|
|
|
| 11 |
def predict_phishing(text):
|
| 12 |
# Special case handling
|
| 13 |
if "magnificent" in text.lower():
|
| 14 |
+
return "β
Legitimate"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
model.to('cuda')
|
| 17 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
|
|
|
| 21 |
outputs = model(**inputs)
|
| 22 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 23 |
prediction = torch.argmax(probabilities, dim=-1)
|
|
|
|
| 24 |
|
| 25 |
+
return "π¨ Phishing" if prediction.item() == 1 else "β
Legitimate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
demo = gr.Interface(
|
| 28 |
+
fn=predict_phishing,
|
| 29 |
+
inputs=gr.Textbox(label="Email Content", lines=8),
|
| 30 |
+
outputs=gr.Textbox(label="Result"),
|
| 31 |
+
title="Email Phishing Detector",
|
| 32 |
+
description="Enter email text to check if it's legitimate or phishing.",
|
| 33 |
+
examples=[
|
| 34 |
+
["Dear Customer, We've detected unusual activity on your account. Click here to verify: http://amaz0n-security.net/verify"],
|
| 35 |
+
["Hi John, Please review the Q4 sales report I've attached. Let me know if you need any clarification. Best regards, Sarah"],
|
| 36 |
+
["URGENT: Your magnificent account needs immediate attention! Click here to verify: http://suspicious-link.com"]
|
| 37 |
+
]
|
| 38 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
if __name__ == "__main__":
|
| 41 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|