newapi-clone4 / routers /search.py
Squaad AI
Initial commit from cloned Space
c5f39f6
from fastapi import APIRouter, HTTPException, Query
from fastapi.responses import JSONResponse
import httpx
import os
import json
import re
from urllib.parse import unquote
from PIL import Image
import io
import asyncio
import struct
from typing import Optional, Tuple, List, Dict
import base64
from functools import lru_cache
import aiofiles
from concurrent.futures import ThreadPoolExecutor
import time
router = APIRouter()
# Pool de threads otimizado para operações CPU-intensivas (thumbnail)
thumbnail_executor = ThreadPoolExecutor(
max_workers=min(32, (os.cpu_count() or 1) + 4),
thread_name_prefix="thumbnail_"
)
# Cache em memória para URLs já processadas
_url_cache = {}
_cache_max_size = 1000
@router.get("/search")
async def search(
q: str = Query(..., description="Termo de pesquisa para imagens"),
min_width: int = Query(1200, description="Largura mínima das imagens (padrão: 1200px)"),
include_thumbnails: bool = Query(True, description="Incluir miniaturas base64 nas respostas")
):
"""
Busca imagens no Google Imagens com máxima performance
"""
start_time = time.time()
# URL do Google Imagens com parâmetros para imagens grandes
google_images_url = "http://www.google.com/search"
params = {
"tbm": "isch",
"q": q,
"start": 0,
"sa": "N",
"asearch": "arc",
"cs": "1",
"tbs": "isz:l",
"async": f"arc_id:srp_GgSMaOPQOtL_5OUPvbSTOQ_110,ffilt:all,ve_name:MoreResultsContainer,inf:1,_id:arc-srp_GgSMaOPQOtL_5OUPvbSTOQ_110,_pms:s,_fmt:pc"
}
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
"Accept-Language": "pt-BR,pt;q=0.8,en-US;q=0.5,en;q=0.3",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
"Referer": "https://www.google.com/"
}
try:
# Busca no Google (rápida)
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.get(google_images_url, params=params, headers=headers)
if response.status_code != 200:
raise HTTPException(status_code=response.status_code, detail="Erro ao buscar no Google Imagens")
print(f"Google respondeu em {time.time() - start_time:.2f}s")
extract_start = time.time()
# Extração otimizada
images = extract_images_from_response_optimized(response.text)
print(f"Extração concluída em {time.time() - extract_start:.2f}s - {len(images)} URLs")
# Processamento paralelo massivo
processing_start = time.time()
enriched_images = await enrich_images_ultra_fast(images, include_thumbnails)
print(f"Processamento concluído em {time.time() - processing_start:.2f}s")
# Filtragem rápida
valid_images = [
img for img in enriched_images
if img.get('width', 0) >= min_width and img.get('height', 0) > 0
]
# Se poucos resultados, busca adicional em paralelo
if len(valid_images) < 20:
params["tbs"] = "isz:lt,islt:4mp"
async with httpx.AsyncClient(timeout=30.0) as client:
response2 = await client.get(google_images_url, params=params, headers=headers)
if response2.status_code == 200:
additional_images = extract_images_from_response_optimized(response2.text)
additional_enriched = await enrich_images_ultra_fast(additional_images, include_thumbnails)
# Merge rápido com set para deduplicação
seen_urls = {img.get('url') for img in valid_images}
for img in additional_enriched:
if (img.get('url') not in seen_urls
and img.get('width', 0) >= min_width
and img.get('height', 0) > 0):
valid_images.append(img)
seen_urls.add(img.get('url'))
# Ordenação e limitação
valid_images.sort(key=lambda x: x.get('width', 0), reverse=True)
final_images = valid_images[:50]
total_time = time.time() - start_time
print(f"TEMPO TOTAL: {total_time:.2f}s - {len(final_images)} imagens finais")
return JSONResponse(content={
"query": q,
"min_width_filter": min_width,
"total_found": len(final_images),
"thumbnails_included": include_thumbnails,
"processing_time": round(total_time, 2),
"images": final_images
})
except httpx.TimeoutException:
raise HTTPException(status_code=408, detail="Timeout na requisição ao Google")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erro ao executar a busca: {str(e)}")
@lru_cache(maxsize=500)
def clean_wikimedia_url_cached(url: str) -> str:
"""
Versão cached da limpeza de URLs do Wikimedia
"""
if 'wikimedia.org' in url and '/thumb/' in url:
try:
parts = url.split('/thumb/')
if len(parts) == 2:
before_thumb = parts[0]
after_thumb = parts[1]
path_parts = after_thumb.split('/')
if len(path_parts) >= 3:
original_path = '/'.join(path_parts[:3])
return f"{before_thumb}/{original_path}"
except:
pass
return url
def extract_images_from_response_optimized(response_text: str) -> List[Dict]:
"""
Extração ultra-otimizada usando regex compilado e processamento em lote
"""
# Regex compilado (mais rápido)
pattern = re.compile(r'https?://[^\s"\'<>]+?\.(?:jpg|png|webp|jpeg)\b', re.IGNORECASE)
# Extração em uma única passada
image_urls = pattern.findall(response_text)
# Deduplicação com set (O(1) lookup)
seen_urls = set()
images = []
# Processa URLs em lote
for url in image_urls[:200]: # Aumentado para compensar filtragem
cleaned_url = clean_wikimedia_url_cached(url)
if cleaned_url not in seen_urls:
seen_urls.add(cleaned_url)
images.append({"url": cleaned_url, "width": None, "height": None})
return images
def get_image_size_super_fast(data: bytes) -> Optional[Tuple[int, int]]:
"""
Parsing ultra-otimizado - apenas formatos mais comuns primeiro
"""
if len(data) < 24:
return None
try:
# JPEG (mais comum) - otimizado
if data[:2] == b'\xff\xd8':
# Busca mais eficiente pelos markers
for i in range(2, min(len(data) - 8, 1000)): # Limita busca
if data[i:i+2] in (b'\xff\xc0', b'\xff\xc2'):
if i + 9 <= len(data):
height = struct.unpack('>H', data[i+5:i+7])[0]
width = struct.unpack('>H', data[i+7:i+9])[0]
if width > 0 and height > 0:
return width, height
# PNG (segundo mais comum)
elif data[:8] == b'\x89PNG\r\n\x1a\n' and len(data) >= 24:
width = struct.unpack('>I', data[16:20])[0]
height = struct.unpack('>I', data[20:24])[0]
if width > 0 and height > 0:
return width, height
# WebP (crescimento)
elif data[:12] == b'RIFF' + data[4:8] + b'WEBP' and len(data) >= 30:
if data[12:16] == b'VP8 ':
width = struct.unpack('<H', data[26:28])[0] & 0x3fff
height = struct.unpack('<H', data[28:30])[0] & 0x3fff
if width > 0 and height > 0:
return width, height
except:
pass
return None
def create_thumbnail_cpu_optimized(image_data: bytes, max_size: int = 200) -> Optional[str]:
"""
Versão CPU-otimizada para threading
"""
if not image_data or len(image_data) < 100:
return None
try:
# Abre imagem (rápido)
with Image.open(io.BytesIO(image_data)) as image:
# Conversão rápida para RGB
if image.mode != 'RGB':
if image.mode in ('RGBA', 'LA'):
# Background branco para transparências
bg = Image.new('RGB', image.size, (255, 255, 255))
bg.paste(image, mask=image.split()[-1] if 'A' in image.mode else None)
image = bg
else:
image = image.convert('RGB')
# Cálculo otimizado de proporções
w, h = image.size
if w > h:
new_w, new_h = max_size, max(1, (h * max_size) // w)
else:
new_w, new_h = max(1, (w * max_size) // h), max_size
# Resize com filtro mais rápido para thumbnails
thumbnail = image.resize((new_w, new_h), Image.Resampling.BILINEAR)
# Salva com configurações otimizadas
buffer = io.BytesIO()
thumbnail.save(buffer, format='JPEG', quality=80, optimize=False) # optimize=False é mais rápido
return f"data:image/jpeg;base64,{base64.b64encode(buffer.getvalue()).decode('utf-8')}"
except Exception as e:
return None
async def download_and_process_image(session: httpx.AsyncClient, url: str, include_thumbnail: bool) -> Dict:
"""
Download e processamento otimizado de uma única imagem
"""
# Verifica cache primeiro
cache_key = f"{url}_{include_thumbnail}"
if cache_key in _url_cache:
return _url_cache[cache_key].copy()
clean_url = url.replace('\\u003d', '=').replace('\\u0026', '&').replace('\\\\', '').replace('\\/', '/')
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Accept': 'image/*',
'Connection': 'close'
}
width, height, thumbnail_b64 = None, None, None
try:
# Estratégia otimizada: tamanhos incrementais
ranges = ['0-8192', '0-32768', '0-131072'] if include_thumbnail else ['0-2048']
for range_header in ranges:
headers['Range'] = f'bytes={range_header}'
try:
response = await session.get(clean_url, headers=headers, timeout=6.0)
if response.status_code in [200, 206] and len(response.content) > 100:
# Parsing rápido de dimensões
if not width or not height:
dimensions = get_image_size_super_fast(response.content)
if dimensions:
width, height = dimensions
# Thumbnail em thread separada se necessário
if include_thumbnail and not thumbnail_b64:
loop = asyncio.get_event_loop()
thumbnail_b64 = await loop.run_in_executor(
thumbnail_executor,
create_thumbnail_cpu_optimized,
response.content
)
# Se conseguiu tudo o que precisava, para por aqui
if width and height and (not include_thumbnail or thumbnail_b64):
break
except:
continue # Tenta próximo range
# Fallback final: download completo se necessário
if (not width or not height or (include_thumbnail and not thumbnail_b64)):
try:
del headers['Range']
response = await session.get(clean_url, headers=headers, timeout=8.0)
if response.status_code == 200 and len(response.content) < 2000000: # Max 2MB
if not width or not height:
try:
with Image.open(io.BytesIO(response.content)) as img:
width, height = img.size
except:
pass
if include_thumbnail and not thumbnail_b64:
loop = asyncio.get_event_loop()
thumbnail_b64 = await loop.run_in_executor(
thumbnail_executor,
create_thumbnail_cpu_optimized,
response.content
)
except:
pass
except Exception as e:
pass
result = {
"url": clean_url,
"width": width,
"height": height
}
if include_thumbnail:
result["thumbnail"] = thumbnail_b64
# Cache do resultado (limita tamanho do cache)
if len(_url_cache) < _cache_max_size:
_url_cache[cache_key] = result.copy()
return result
async def enrich_images_ultra_fast(images: List[Dict], include_thumbnails: bool = True) -> List[Dict]:
"""
Processamento ultra-paralelo com todas as otimizações modernas
"""
if not images:
return []
# Configuração HTTP2 otimizada para máxima concorrência
connector = httpx.AsyncClient(
timeout=httpx.Timeout(10.0),
limits=httpx.Limits(
max_keepalive_connections=100, # Muito mais conexões
max_connections=150, # Pool maior
keepalive_expiry=30.0 # Mantém conexões por mais tempo
),
http2=False # HTTP/1.1 ainda é mais rápido para muitas conexões pequenas
)
# Semáforo mais agressivo
semaphore = asyncio.Semaphore(30) # Muito mais concorrência
async def process_single_image(image_data):
async with semaphore:
return await download_and_process_image(connector, image_data["url"], include_thumbnails)
try:
print(f"Iniciando processamento ultra-paralelo de {len(images)} imagens...")
# Cria todas as tasks de uma vez
tasks = [process_single_image(img) for img in images]
# Processa tudo em paralelo com gather otimizado
results = await asyncio.gather(*tasks, return_exceptions=True)
# Filtragem rápida
valid_results = []
for result in results:
if not isinstance(result, Exception) and result.get('width') and result.get('height'):
valid_results.append(result)
success_rate = len(valid_results) / len(images) * 100
print(f"Processamento concluído: {len(valid_results)}/{len(images)} ({success_rate:.1f}% sucesso)")
return valid_results
except Exception as e:
print(f"Erro no processamento ultra-rápido: {e}")
return []
finally:
await connector.aclose()
# Endpoint adicional otimizado
@router.get("/thumbnail")
async def get_thumbnail_fast(
url: str = Query(..., description="URL da imagem para gerar miniatura"),
size: int = Query(200, description="Tamanho máximo da miniatura em pixels")
):
"""
Obtém miniatura ultra-rápida de uma imagem específica
"""
try:
async with httpx.AsyncClient(timeout=8.0) as client:
result = await download_and_process_image(client, url, True)
if result.get('thumbnail'):
return JSONResponse(content={
"url": result['url'],
"thumbnail": result['thumbnail'],
"dimensions": f"{result.get('width', 0)}x{result.get('height', 0)}",
"size": size
})
else:
raise HTTPException(status_code=500, detail="Erro ao criar miniatura")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erro: {str(e)}")
# Cleanup do executor na finalização
import atexit
atexit.register(lambda: thumbnail_executor.shutdown(wait=False))