Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
from qdrant_client import QdrantClient
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
qclient = QdrantClient(
|
| 8 |
+
url="https://68106439-3d00-42df-880f-a5519695f677.us-east4-0.gcp.cloud.qdrant.io:6333",
|
| 9 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
client = OpenAI(
|
| 13 |
+
base_url="https://openrouter.ai/api/v1",
|
| 14 |
+
api_key=os.getenv("OPENROUTER_API_KEY"),
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def chat(prompt: str) -> str:
|
| 18 |
+
message = client.chat.completions.create(
|
| 19 |
+
model="anthropic/claude-3-haiku",
|
| 20 |
+
messages=[
|
| 21 |
+
{"role": "user", "content": prompt}
|
| 22 |
+
],
|
| 23 |
+
).choices[0].message.content
|
| 24 |
+
|
| 25 |
+
return message
|
| 26 |
+
|
| 27 |
+
def question_answer(chat_history, question):
|
| 28 |
+
import requests
|
| 29 |
+
API_URL = "https://api-inference.huggingface.co/models/BAAI/bge-large-zh-v1.5"
|
| 30 |
+
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
| 31 |
+
|
| 32 |
+
payload = {
|
| 33 |
+
"inputs": question,
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 37 |
+
e = response.json()
|
| 38 |
+
|
| 39 |
+
search_result = client.search(
|
| 40 |
+
collection_name="test_collection", query_vector=e, limit=20
|
| 41 |
+
)
|
| 42 |
+
txt = '\n'.join([r.payload['text'] for r in search_result])
|
| 43 |
+
print(txt)
|
| 44 |
+
|
| 45 |
+
prompt = f"现在你是一个资深的工程师管家,我将相关的信息已经从数据库中通过向量搜索给你了,如下\n{txt}\n, 根据这些信息回答我的这个问题\n{question}\n,"\
|
| 46 |
+
"尽量简短以及用数值去说明,如果并没有答案,请回答我不知道。"
|
| 47 |
+
|
| 48 |
+
answer = chat(prompt)
|
| 49 |
+
chat_history.append([question, answer])
|
| 50 |
+
return chat_history
|
| 51 |
+
|
| 52 |
+
with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
|
| 53 |
+
gr.Markdown(f'<center><h3>Demo</h3></center>')
|
| 54 |
+
with gr.Row():
|
| 55 |
+
with gr.Group():
|
| 56 |
+
# with gr.Accordion("pdf file"):
|
| 57 |
+
# file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
|
| 58 |
+
question = gr.Textbox(label='Enter your question here')
|
| 59 |
+
btn = gr.Button(value='Submit')
|
| 60 |
+
|
| 61 |
+
with gr.Group():
|
| 62 |
+
chatbot = gr.Chatbot(label="Chat History", elem_id="chatbot")
|
| 63 |
+
|
| 64 |
+
btn.click(
|
| 65 |
+
question_answer,
|
| 66 |
+
inputs=[chatbot, question],
|
| 67 |
+
outputs=[chatbot],
|
| 68 |
+
api_name="predict",
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
demo.launch(share=True)
|