File size: 10,406 Bytes
a6a3b86
 
 
 
 
 
 
 
99630d9
a6a3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99630d9
a6a3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99630d9
a6a3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be18bd7
a6a3b86
 
 
 
 
be18bd7
a6a3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be18bd7
a6a3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99630d9
a6a3b86
99630d9
a6a3b86
be18bd7
 
a6a3b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os, uuid, warnings, math, tempfile
from pathlib import Path
from typing import List, Tuple

warnings.filterwarnings("ignore")

def _ensure_deps():
    try:
        import mediapipe, fpdf  
    except ImportError:
        os.system("pip install --quiet --upgrade mediapipe fpdf")

_ensure_deps()

import cv2
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from fpdf import FPDF
import mediapipe as mp
from facenet_pytorch import InceptionResnetV1, MTCNN
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from torchvision import transforms
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchcam.methods import GradCAM as TCGradCAM
from captum.attr import Saliency
from skimage.feature import graycomatrix, graycoprops
import matplotlib.pyplot as plt
import pandas as pd
import spaces

plt.set_loglevel("ERROR")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

_face_det = MTCNN(select_largest=False, post_process=False, device=device).eval().to(device)
_df_model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=device)
_df_model.load_state_dict(torch.load("resnet_inception.pth", map_location="cpu")["model_state_dict"])
_df_model.to(device).eval()
_df_cam = GradCAM(_df_model, target_layers=[_df_model.block8.branch1[-1]],
                  use_cuda=device.type == "cuda")

def _get_layer(model, name: str):
    mods = dict(model.named_modules())
    return mods.get(name) or next(m for n, m in mods.items() if n.endswith(name))

BIN_ID = "haywoodsloan/ai-image-detector-deploy"
_bin_proc = AutoImageProcessor.from_pretrained(BIN_ID)
_bin_mod  = AutoModelForImageClassification.from_pretrained(BIN_ID).to(device).eval()
_CAM_LAYER_BIN = "encoder.layers.3.blocks.1.layernorm_after"
_bin_cam = TCGradCAM(_bin_mod, target_layer=_get_layer(_bin_mod, _CAM_LAYER_BIN))

_susy_mod = torch.jit.load("SuSy.pt").to(device).eval()
_GEN_CLASSES = ["Stable Diffusion 1.x", "DALL·E 3",
                "MJ V5/V6", "Stable Diffusion XL", "MJ V1/V2"]
_PATCH, _TOP = 224, 5
_to_tensor = transforms.ToTensor()
_to_gray   = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])

_calib_df_slope, _calib_df_inter = 1.0, 0.0
_calib_ai_slope, _calib_ai_inter = 1.0, 0.0


def _calibrate_df(p: float) -> float:   
    return p

def _calibrate_ai(p: float) -> float:
    return p

UNCERTAIN_GAP = 0.10
MIN_FRAMES, MAX_SAMPLES = 4, 20

def _extract_landmarks(rgb: np.ndarray) -> Tuple[np.ndarray, np.ndarray | None]:
    mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1)
    res  = mesh.process(rgb); mesh.close()
    if not res.multi_face_landmarks:
        return rgb, None
    h, w, _ = rgb.shape
    out = rgb.copy()
    for lm in res.multi_face_landmarks[0].landmark:
        cx, cy = int(lm.x * w), int(lm.y * h)
        cv2.circle(out, (cx, cy), 1, (0, 255, 0), -1)
    return out, None

def _overlay_cam(cam, base):
    if torch.is_tensor(cam):  
        cam = cam.detach().cpu().numpy()

    cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6)
    heat = Image.fromarray(
        (plt.cm.jet(cam)[:, :, :3] * 255).astype(np.uint8)
    ).resize((base.shape[1], base.shape[0]), Image.BICUBIC)

    return Image.blend(
        Image.fromarray(base).convert("RGBA"),
        heat.convert("RGBA"),
        alpha=0.45,
    )

def _render_pdf(title: str, verdict: str, conf: dict, pages: List[Image.Image]) -> str:
    out = Path(f"/tmp/report_{uuid.uuid4().hex}.pdf")
    pdf = FPDF(); pdf.set_auto_page_break(True, 15); pdf.add_page()
    pdf.set_font("Helvetica", size=14); pdf.cell(0, 10, title, ln=True, align="C")
    pdf.ln(4); pdf.set_font("Helvetica", size=12)
    pdf.multi_cell(0, 6, f"Verdict: {verdict}\n"
                         f"Confidence -> Real {conf['real']:.3f}  Fake {conf['fake']:.3f}")
    for idx, img in enumerate(pages):
        pdf.ln(4); pdf.set_font("Helvetica", size=11)
        pdf.cell(0, 6, f"Figure {idx+1}", ln=True)

        tmp = Path(tempfile.mktemp(suffix=".jpg"))
        img.convert("RGB").save(tmp, format="JPEG")
        pdf.image(str(tmp), x=10, w=90)
        tmp.unlink(missing_ok=True)
    pdf.output(out)
    return str(out)


def _susy_cam(tensor: torch.Tensor, class_idx: int) -> np.ndarray:
    sal = Saliency(_susy_mod)
    grad = sal.attribute(tensor, target=class_idx).abs().mean(1, keepdim=True)
    return grad.squeeze().detach().cpu().numpy()

@spaces.GPU
def _susy_predict(img: Image.Image):
    w, h = img.size
    npx, npy = max(1, w // _PATCH), max(1, h // _PATCH)
    patches  = np.zeros((npx * npy, _PATCH, _PATCH, 3), dtype=np.uint8)
    for i in range(npx):
        for j in range(npy):
            x, y = i * _PATCH, j * _PATCH
            patches[i*npy + j] = np.array(img.crop((x, y, x+_PATCH, y+_PATCH))
                                              .resize((_PATCH, _PATCH)))
    contrasts = []
    for p in patches:
        g = _to_gray(Image.fromarray(p)).squeeze(0).numpy()
        glcm = graycomatrix(g, [5], [0], 256, symmetric=True, normed=True)
        contrasts.append(graycoprops(glcm, "contrast")[0, 0])
    idx   = np.argsort(contrasts)[::-1][:_TOP]
    tens  = torch.from_numpy(patches[idx].transpose(0, 3, 1, 2)).float() / 255.0
    with torch.no_grad():
        probs = _susy_mod(tens.to(device)).softmax(-1).mean(0).cpu().numpy()[1:]
    return dict(zip(_GEN_CLASSES, probs))

def _fuse(p_ai: float, p_df: float) -> float:
    return 1 - (1 - p_ai) * (1 - p_df)

def _verdict(p: float) -> str:
    return "uncertain" if abs(p - 0.5) <= UNCERTAIN_GAP else ("fake" if p > 0.5 else "real")

@spaces.GPU
def _predict_image(pil: Image.Image):
    gallery: List[Image.Image] = []

    try:
        face = _face_det(pil)
    except Exception:
        face = None
    if face is not None:
        ft = F.interpolate(face.unsqueeze(0), (256, 256), mode="bilinear",
                           align_corners=False).float() / 255.0
        p_df_raw = torch.sigmoid(_df_model(ft.to(device))).item()
        p_df = _calibrate_df(p_df_raw)
        crop_np = (ft.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
        cam_df  = _df_cam(ft, [ClassifierOutputTarget(0)])[0]
        gallery.append(_overlay_cam(cam_df, crop_np))
        gallery.append(Image.fromarray(_extract_landmarks(
            cv2.cvtColor(np.array(pil), cv2.COLOR_BGR2RGB))[0]))
    else:
        p_df = 0.5

    inp_bin = _bin_proc(images=pil, return_tensors="pt").to(device)
    logits  = _bin_mod(**inp_bin).logits.softmax(-1)[0]
    p_ai_raw = logits[0].item()
    p_ai = _calibrate_ai(p_ai_raw)
    winner_idx = 0 if p_ai_raw >= logits[1].item() else 1
    inp_bin_h = {k: v.clone().detach().requires_grad_(True) for k, v in inp_bin.items()}
    cam_bin = _bin_cam(winner_idx, scores=_bin_mod(**inp_bin_h).logits)[0]
    gallery.append(_overlay_cam(cam_bin, np.array(pil)))

    bar_plot = gr.update(visible=False)
    if p_ai_raw > logits[1].item():
        gen_probs = _susy_predict(pil)
        bar_plot  = gr.update(value=pd.DataFrame(gen_probs.items(), columns=["class", "prob"]),
                              visible=True)
        susy_in   = _to_tensor(pil.resize((224, 224))).unsqueeze(0).to(device)
        g_idx     = _susy_mod(susy_in)[0, 1:].argmax().item() + 1
        cam_susy  = _susy_cam(susy_in, g_idx)
        gallery.append(_overlay_cam(cam_susy, np.array(pil)))

    # Fusion
    p_final = _fuse(p_ai, p_df)
    verdict = _verdict(p_final)
    conf    = {"real": round(1-p_final, 4), "fake": round(p_final, 4)}
    pdf     = _render_pdf("Unified Detector", verdict, conf, gallery[:3])

    return verdict, conf, gallery, bar_plot, pdf

def _sample_idx(n):  
    return list(range(n)) if n <= MAX_SAMPLES else np.linspace(0, n-1, MAX_SAMPLES, dtype=int)

@spaces.GPU
def _predict_video(path: str):
    cap = cv2.VideoCapture(path); total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 1
    probs, frames = [], []
    for i in _sample_idx(total):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ok, frm = cap.read()
        if not ok:
            continue
        pil = Image.fromarray(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB))
        verdict, conf, _, _, _ = _predict_image(pil)
        probs.append(conf["fake"])
        if len(frames) < MIN_FRAMES:
            frames.append(Image.fromarray(frm))
    cap.release()
    if not probs:
        blank = Image.new("RGB", (256, 256))
        return "No frames analysed", {"real": 0, "fake": 0}, [blank]

    p_final = float(np.mean(probs))
    return _verdict(p_final), {"real": round(1-p_final, 4), "fake": round(p_final, 4)}, frames

_css = "footer{visibility:hidden!important}.logo,#logo{display:none!important}"

with gr.Blocks(css=_css, title="AI-Fake & Deepfake Analyser") as demo:
    gr.Markdown("""
    ## Deepfake detector
    Upload an **image** or a short **video**.  
    The app fuses two complementary models, then shows heat-maps & a PDF report.Made by Code Alchemists
    Which is (Brijesh Khanoolkar, Shreeya Dessai, Slevin Rodrigues , Rafan Khan)
    """)

    with gr.Tab("Image"):
        with gr.Row():
            with gr.Column(scale=1):
                img_in = gr.Image(label="Upload image", type="pil")
                btn_i  = gr.Button("Analyze")
            with gr.Column(scale=2):
                txt_v  = gr.Textbox(label="Verdict", interactive=False)
                lbl_c  = gr.Label(label="Confidence")
        gal   = gr.Gallery(label="Explanations", columns=3, height=320)
        bar   = gr.BarPlot(x="class", y="prob", title="Likely generator",
                           y_label="probability", visible=False)
        pdf_f = gr.File(label="Download PDF report")

        btn_i.click(_predict_image, img_in, [txt_v, lbl_c, gal, bar, pdf_f])

    with gr.Tab("Video"):
        with gr.Row():
            with gr.Column(scale=1):
                vid_in = gr.Video(label="Upload MP4/AVI", format="mp4")
                btn_v  = gr.Button("Analyze")
            with gr.Column(scale=2):
                txt_vv = gr.Textbox(label="Verdict", interactive=False)
                lbl_cv = gr.Label(label="Confidence")
        gal_v = gr.Gallery(label="Sample frames", columns=4, height=240)

        btn_v.click(_predict_video, vid_in, [txt_vv, lbl_cv, gal_v])

demo.launch(share=True, show_api=False)