import os, uuid, warnings, math, tempfile from pathlib import Path from typing import List, Tuple warnings.filterwarnings("ignore") def _ensure_deps(): try: import mediapipe, fpdf except ImportError: os.system("pip install --quiet --upgrade mediapipe fpdf") _ensure_deps() import cv2 import gradio as gr import numpy as np import torch import torch.nn.functional as F from PIL import Image from fpdf import FPDF import mediapipe as mp from facenet_pytorch import InceptionResnetV1, MTCNN from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from torchvision import transforms from transformers import AutoImageProcessor, AutoModelForImageClassification from torchcam.methods import GradCAM as TCGradCAM from captum.attr import Saliency from skimage.feature import graycomatrix, graycoprops import matplotlib.pyplot as plt import pandas as pd import spaces plt.set_loglevel("ERROR") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") _face_det = MTCNN(select_largest=False, post_process=False, device=device).eval().to(device) _df_model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=device) _df_model.load_state_dict(torch.load("resnet_inception.pth", map_location="cpu")["model_state_dict"]) _df_model.to(device).eval() _df_cam = GradCAM(_df_model, target_layers=[_df_model.block8.branch1[-1]], use_cuda=device.type == "cuda") def _get_layer(model, name: str): mods = dict(model.named_modules()) return mods.get(name) or next(m for n, m in mods.items() if n.endswith(name)) BIN_ID = "haywoodsloan/ai-image-detector-deploy" _bin_proc = AutoImageProcessor.from_pretrained(BIN_ID) _bin_mod = AutoModelForImageClassification.from_pretrained(BIN_ID).to(device).eval() _CAM_LAYER_BIN = "encoder.layers.3.blocks.1.layernorm_after" _bin_cam = TCGradCAM(_bin_mod, target_layer=_get_layer(_bin_mod, _CAM_LAYER_BIN)) _susy_mod = torch.jit.load("SuSy.pt").to(device).eval() _GEN_CLASSES = ["Stable Diffusion 1.x", "DALLĀ·E 3", "MJ V5/V6", "Stable Diffusion XL", "MJ V1/V2"] _PATCH, _TOP = 224, 5 _to_tensor = transforms.ToTensor() _to_gray = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()]) _calib_df_slope, _calib_df_inter = 1.0, 0.0 _calib_ai_slope, _calib_ai_inter = 1.0, 0.0 def _calibrate_df(p: float) -> float: return p def _calibrate_ai(p: float) -> float: return p UNCERTAIN_GAP = 0.10 MIN_FRAMES, MAX_SAMPLES = 4, 20 def _extract_landmarks(rgb: np.ndarray) -> Tuple[np.ndarray, np.ndarray | None]: mesh = mp.solutions.face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1) res = mesh.process(rgb); mesh.close() if not res.multi_face_landmarks: return rgb, None h, w, _ = rgb.shape out = rgb.copy() for lm in res.multi_face_landmarks[0].landmark: cx, cy = int(lm.x * w), int(lm.y * h) cv2.circle(out, (cx, cy), 1, (0, 255, 0), -1) return out, None def _overlay_cam(cam, base): if torch.is_tensor(cam): cam = cam.detach().cpu().numpy() cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-6) heat = Image.fromarray( (plt.cm.jet(cam)[:, :, :3] * 255).astype(np.uint8) ).resize((base.shape[1], base.shape[0]), Image.BICUBIC) return Image.blend( Image.fromarray(base).convert("RGBA"), heat.convert("RGBA"), alpha=0.45, ) def _render_pdf(title: str, verdict: str, conf: dict, pages: List[Image.Image]) -> str: out = Path(f"/tmp/report_{uuid.uuid4().hex}.pdf") pdf = FPDF(); pdf.set_auto_page_break(True, 15); pdf.add_page() pdf.set_font("Helvetica", size=14); pdf.cell(0, 10, title, ln=True, align="C") pdf.ln(4); pdf.set_font("Helvetica", size=12) pdf.multi_cell(0, 6, f"Verdict: {verdict}\n" f"Confidence -> Real {conf['real']:.3f} Fake {conf['fake']:.3f}") for idx, img in enumerate(pages): pdf.ln(4); pdf.set_font("Helvetica", size=11) pdf.cell(0, 6, f"Figure {idx+1}", ln=True) tmp = Path(tempfile.mktemp(suffix=".jpg")) img.convert("RGB").save(tmp, format="JPEG") pdf.image(str(tmp), x=10, w=90) tmp.unlink(missing_ok=True) pdf.output(out) return str(out) def _susy_cam(tensor: torch.Tensor, class_idx: int) -> np.ndarray: sal = Saliency(_susy_mod) grad = sal.attribute(tensor, target=class_idx).abs().mean(1, keepdim=True) return grad.squeeze().detach().cpu().numpy() @spaces.GPU def _susy_predict(img: Image.Image): w, h = img.size npx, npy = max(1, w // _PATCH), max(1, h // _PATCH) patches = np.zeros((npx * npy, _PATCH, _PATCH, 3), dtype=np.uint8) for i in range(npx): for j in range(npy): x, y = i * _PATCH, j * _PATCH patches[i*npy + j] = np.array(img.crop((x, y, x+_PATCH, y+_PATCH)) .resize((_PATCH, _PATCH))) contrasts = [] for p in patches: g = _to_gray(Image.fromarray(p)).squeeze(0).numpy() glcm = graycomatrix(g, [5], [0], 256, symmetric=True, normed=True) contrasts.append(graycoprops(glcm, "contrast")[0, 0]) idx = np.argsort(contrasts)[::-1][:_TOP] tens = torch.from_numpy(patches[idx].transpose(0, 3, 1, 2)).float() / 255.0 with torch.no_grad(): probs = _susy_mod(tens.to(device)).softmax(-1).mean(0).cpu().numpy()[1:] return dict(zip(_GEN_CLASSES, probs)) def _fuse(p_ai: float, p_df: float) -> float: return 1 - (1 - p_ai) * (1 - p_df) def _verdict(p: float) -> str: return "uncertain" if abs(p - 0.5) <= UNCERTAIN_GAP else ("fake" if p > 0.5 else "real") @spaces.GPU def _predict_image(pil: Image.Image): gallery: List[Image.Image] = [] try: face = _face_det(pil) except Exception: face = None if face is not None: ft = F.interpolate(face.unsqueeze(0), (256, 256), mode="bilinear", align_corners=False).float() / 255.0 p_df_raw = torch.sigmoid(_df_model(ft.to(device))).item() p_df = _calibrate_df(p_df_raw) crop_np = (ft.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) cam_df = _df_cam(ft, [ClassifierOutputTarget(0)])[0] gallery.append(_overlay_cam(cam_df, crop_np)) gallery.append(Image.fromarray(_extract_landmarks( cv2.cvtColor(np.array(pil), cv2.COLOR_BGR2RGB))[0])) else: p_df = 0.5 inp_bin = _bin_proc(images=pil, return_tensors="pt").to(device) logits = _bin_mod(**inp_bin).logits.softmax(-1)[0] p_ai_raw = logits[0].item() p_ai = _calibrate_ai(p_ai_raw) winner_idx = 0 if p_ai_raw >= logits[1].item() else 1 inp_bin_h = {k: v.clone().detach().requires_grad_(True) for k, v in inp_bin.items()} cam_bin = _bin_cam(winner_idx, scores=_bin_mod(**inp_bin_h).logits)[0] gallery.append(_overlay_cam(cam_bin, np.array(pil))) bar_plot = gr.update(visible=False) if p_ai_raw > logits[1].item(): gen_probs = _susy_predict(pil) bar_plot = gr.update(value=pd.DataFrame(gen_probs.items(), columns=["class", "prob"]), visible=True) susy_in = _to_tensor(pil.resize((224, 224))).unsqueeze(0).to(device) g_idx = _susy_mod(susy_in)[0, 1:].argmax().item() + 1 cam_susy = _susy_cam(susy_in, g_idx) gallery.append(_overlay_cam(cam_susy, np.array(pil))) # Fusion p_final = _fuse(p_ai, p_df) verdict = _verdict(p_final) conf = {"real": round(1-p_final, 4), "fake": round(p_final, 4)} pdf = _render_pdf("Unified Detector", verdict, conf, gallery[:3]) return verdict, conf, gallery, bar_plot, pdf def _sample_idx(n): return list(range(n)) if n <= MAX_SAMPLES else np.linspace(0, n-1, MAX_SAMPLES, dtype=int) @spaces.GPU def _predict_video(path: str): cap = cv2.VideoCapture(path); total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 1 probs, frames = [], [] for i in _sample_idx(total): cap.set(cv2.CAP_PROP_POS_FRAMES, i) ok, frm = cap.read() if not ok: continue pil = Image.fromarray(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB)) verdict, conf, _, _, _ = _predict_image(pil) probs.append(conf["fake"]) if len(frames) < MIN_FRAMES: frames.append(Image.fromarray(frm)) cap.release() if not probs: blank = Image.new("RGB", (256, 256)) return "No frames analysed", {"real": 0, "fake": 0}, [blank] p_final = float(np.mean(probs)) return _verdict(p_final), {"real": round(1-p_final, 4), "fake": round(p_final, 4)}, frames _css = "footer{visibility:hidden!important}.logo,#logo{display:none!important}" with gr.Blocks(css=_css, title="AI-Fake & Deepfake Analyser") as demo: gr.Markdown(""" ## Deepfake detector Upload an **image** or a short **video**. The app fuses two complementary models, then shows heat-maps & a PDF report.Made by Code Alchemists Which is (Brijesh Khanoolkar, Shreeya Dessai, Slevin Rodrigues , Rafan Khan) """) with gr.Tab("Image"): with gr.Row(): with gr.Column(scale=1): img_in = gr.Image(label="Upload image", type="pil") btn_i = gr.Button("Analyze") with gr.Column(scale=2): txt_v = gr.Textbox(label="Verdict", interactive=False) lbl_c = gr.Label(label="Confidence") gal = gr.Gallery(label="Explanations", columns=3, height=320) bar = gr.BarPlot(x="class", y="prob", title="Likely generator", y_label="probability", visible=False) pdf_f = gr.File(label="Download PDF report") btn_i.click(_predict_image, img_in, [txt_v, lbl_c, gal, bar, pdf_f]) with gr.Tab("Video"): with gr.Row(): with gr.Column(scale=1): vid_in = gr.Video(label="Upload MP4/AVI", format="mp4") btn_v = gr.Button("Analyze") with gr.Column(scale=2): txt_vv = gr.Textbox(label="Verdict", interactive=False) lbl_cv = gr.Label(label="Confidence") gal_v = gr.Gallery(label="Sample frames", columns=4, height=240) btn_v.click(_predict_video, vid_in, [txt_vv, lbl_cv, gal_v]) demo.launch(share=True, show_api=False)