Create inference_data_pipeline.py
Browse files- inference_data_pipeline.py +92 -0
inference_data_pipeline.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Class to fetch news and stock data from the web for a specific ticker and combine them into a dataframe.
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import yfinance as yf
|
| 5 |
+
from pygooglenews import GoogleNews
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
class InferenceDataPipeline:
|
| 9 |
+
def __init__(self, ticker, time_period_news, time_period_stock):
|
| 10 |
+
self.ticker = ticker
|
| 11 |
+
self.time_period_news = time_period_news
|
| 12 |
+
self.time_period_stock = time_period_stock
|
| 13 |
+
|
| 14 |
+
def get_data(self):
|
| 15 |
+
stock_data = self.get_stock_data()
|
| 16 |
+
news_data = self.get_news_data()
|
| 17 |
+
news_sentiment = self.get_sentiment(news_data)
|
| 18 |
+
combined_data = self.combine_data(stock_data, news_sentiment)
|
| 19 |
+
|
| 20 |
+
return combined_data
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_stock_data(self):
|
| 24 |
+
data = yf.download(self.ticker , period = self.time_period_stock)
|
| 25 |
+
df = pd.DataFrame()
|
| 26 |
+
df['Open'] = data['Open']
|
| 27 |
+
df['Close'] = data['Close']
|
| 28 |
+
df['High'] = data['High']
|
| 29 |
+
df['Low'] = data['Low']
|
| 30 |
+
df['Volume'] = data['Volume']
|
| 31 |
+
|
| 32 |
+
return df
|
| 33 |
+
|
| 34 |
+
def get_news_data(self):
|
| 35 |
+
googlenews = GoogleNews()
|
| 36 |
+
news_data = googlenews.search(self.ticker, when=self.time_period_news)
|
| 37 |
+
news_data = pd.DataFrame(news_data['entries'])
|
| 38 |
+
return news_data
|
| 39 |
+
|
| 40 |
+
def get_sentiment(self, news_data):
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
| 42 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
| 43 |
+
classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
| 44 |
+
|
| 45 |
+
news_sentiment = []
|
| 46 |
+
for i in range(len(news_data)):
|
| 47 |
+
sentiment = classifier(news_data['title'][i], top_k=None)
|
| 48 |
+
postive_score = sentiment[0]['score']
|
| 49 |
+
negative_score = sentiment[1]['score']
|
| 50 |
+
neutral_score = sentiment[2]['score']
|
| 51 |
+
reformmated_time_stamp = pd.to_datetime(news_data['published'][i]).date()
|
| 52 |
+
news_sentiment.append({'Date': reformmated_time_stamp, 'positive_score': postive_score, 'negative_score': negative_score, 'neutral_score': neutral_score})
|
| 53 |
+
return pd.DataFrame(news_sentiment)
|
| 54 |
+
|
| 55 |
+
def combine_data(self, stock_data, news_sentiment):
|
| 56 |
+
news_sentiment = (
|
| 57 |
+
news_sentiment
|
| 58 |
+
.groupby('Date')
|
| 59 |
+
.mean()
|
| 60 |
+
.fillna(0)
|
| 61 |
+
.reset_index()
|
| 62 |
+
.set_index('Date')
|
| 63 |
+
.sort_index()
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
common_index = pd.date_range(
|
| 67 |
+
start=pd.Timestamp(min(pd.Timestamp(stock_data.index[0]), pd.Timestamp(news_sentiment.index[0]))),
|
| 68 |
+
end=pd.Timestamp(max(pd.Timestamp(stock_data.index[-1]), pd.Timestamp(news_sentiment.index[-1]))),
|
| 69 |
+
freq='D'
|
| 70 |
+
)
|
| 71 |
+
stock_data = stock_data.reindex(common_index).fillna(-1)
|
| 72 |
+
|
| 73 |
+
news_sentiment = news_sentiment.reindex(common_index).fillna(0)
|
| 74 |
+
|
| 75 |
+
#Ensure stock_data and news_sentiment have combatile indices
|
| 76 |
+
stock_data.index = pd.to_datetime(stock_data.index).normalize()
|
| 77 |
+
news_sentiment.index = pd.to_datetime(news_sentiment.index).normalize()
|
| 78 |
+
|
| 79 |
+
combined_data = pd.merge(
|
| 80 |
+
stock_data,
|
| 81 |
+
news_sentiment,
|
| 82 |
+
how='left',
|
| 83 |
+
left_index=True,
|
| 84 |
+
right_index=True
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
#Drop all close values that are -1
|
| 88 |
+
combined_data = combined_data[combined_data['Close'] != -1]
|
| 89 |
+
#fill all missing values with 0
|
| 90 |
+
combined_data = combined_data.fillna(0)
|
| 91 |
+
|
| 92 |
+
return combined_data
|