Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pickle
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
| 6 |
+
from nltk.tokenize import word_tokenize
|
| 7 |
+
import nltk
|
| 8 |
+
import time
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
# Download required NLTK data
|
| 12 |
+
try:
|
| 13 |
+
nltk.download('punkt', quiet=True)
|
| 14 |
+
nltk.download('punkt_tab', quiet=True)
|
| 15 |
+
except:
|
| 16 |
+
pass
|
| 17 |
+
|
| 18 |
+
# Global variables to store loaded model
|
| 19 |
+
loaded_model = None
|
| 20 |
+
loaded_tokenizer = None
|
| 21 |
+
loaded_config = None
|
| 22 |
+
generation_history = []
|
| 23 |
+
|
| 24 |
+
# Auto-load model on startup
|
| 25 |
+
def initialize_model():
|
| 26 |
+
"""Initialize model automatically on app startup"""
|
| 27 |
+
return load_model_from_pickle("best_model.pkl")
|
| 28 |
+
|
| 29 |
+
def load_model_from_pickle(pickle_path="best_model.pkl"):
|
| 30 |
+
"""Load model from pickle file (auto-loads on startup)"""
|
| 31 |
+
global loaded_model, loaded_tokenizer, loaded_config
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
# Check if file exists
|
| 35 |
+
if not os.path.exists(pickle_path):
|
| 36 |
+
return f"β Model file not found: {pickle_path}\n\nPlease ensure best_model.pkl is uploaded to the HuggingFace Space."
|
| 37 |
+
|
| 38 |
+
# Simple, direct load - model should already be CPU-compatible
|
| 39 |
+
try:
|
| 40 |
+
model_package = torch.load(pickle_path, map_location='cpu')
|
| 41 |
+
except Exception as e:
|
| 42 |
+
error_msg = str(e)
|
| 43 |
+
|
| 44 |
+
# Check if it's the CUDA deserialization error
|
| 45 |
+
if 'Attempting to deserialize object on a CUDA device' in error_msg:
|
| 46 |
+
return """β Model file is GPU-trained and not CPU-compatible.
|
| 47 |
+
|
| 48 |
+
β οΈ SOLUTION: Convert the model on Colab BEFORE downloading:
|
| 49 |
+
|
| 50 |
+
Run this in your Colab notebook (where you trained the model):
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
import torch
|
| 54 |
+
import pickle
|
| 55 |
+
|
| 56 |
+
# Load GPU model
|
| 57 |
+
with open('best_model.pkl', 'rb') as f:
|
| 58 |
+
model_package = pickle.load(f)
|
| 59 |
+
|
| 60 |
+
# Move to CPU
|
| 61 |
+
if 'model' in model_package:
|
| 62 |
+
model_package['model'] = model_package['model'].cpu()
|
| 63 |
+
for param in model_package['model'].parameters():
|
| 64 |
+
param.data = param.data.cpu()
|
| 65 |
+
for buffer in model_package['model'].buffers():
|
| 66 |
+
buffer.data = buffer.data.cpu()
|
| 67 |
+
|
| 68 |
+
# Save CPU version
|
| 69 |
+
torch.save(model_package, 'best_model_cpu.pkl')
|
| 70 |
+
|
| 71 |
+
# Download
|
| 72 |
+
from google.colab import files
|
| 73 |
+
files.download('best_model_cpu.pkl')
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
Then upload 'best_model_cpu.pkl' to this Space and rename it to 'best_model.pkl'.
|
| 77 |
+
|
| 78 |
+
π See COLAB_INSTRUCTIONS.md for detailed steps.
|
| 79 |
+
"""
|
| 80 |
+
else:
|
| 81 |
+
return f"β Error loading model: {error_msg}\n\nPlease check that the file is a valid PyTorch pickle."
|
| 82 |
+
|
| 83 |
+
# Success! Model loaded with one of the strategies above
|
| 84 |
+
# Handle a few common package shapes.
|
| 85 |
+
if isinstance(model_package, dict):
|
| 86 |
+
loaded_model = model_package.get('model', None)
|
| 87 |
+
loaded_tokenizer = model_package.get('tokenizer', None)
|
| 88 |
+
loaded_config = model_package.get('config', {}) or {}
|
| 89 |
+
else:
|
| 90 |
+
# Unknown package format: assume the object itself is the model
|
| 91 |
+
loaded_model = model_package
|
| 92 |
+
loaded_tokenizer = None
|
| 93 |
+
loaded_config = {}
|
| 94 |
+
|
| 95 |
+
# If user saved a state_dict instead of a model object, provide guidance
|
| 96 |
+
if isinstance(loaded_model, dict) and 'state_dict' in loaded_model:
|
| 97 |
+
# the file contains something like {'state_dict': ...}
|
| 98 |
+
return ("β The pickle appears to contain a state_dict rather than a full model object. "
|
| 99 |
+
"This app expects a pickled model object (model instance).\n"
|
| 100 |
+
"If you only have a state_dict, re-create the model architecture and load the state_dict before pickling, "
|
| 101 |
+
"or provide a pickled model object saved with torch.save(model, path).")
|
| 102 |
+
|
| 103 |
+
if loaded_model is None:
|
| 104 |
+
return ("β No model object found inside the pickle. Please ensure the pickle contains a dict with keys "
|
| 105 |
+
"'model', 'tokenizer', and 'config' (or the model object itself).")
|
| 106 |
+
|
| 107 |
+
# Set model to evaluation mode and move to appropriate device
|
| 108 |
+
try:
|
| 109 |
+
loaded_model.eval()
|
| 110 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 111 |
+
loaded_model = loaded_model.to(device)
|
| 112 |
+
except Exception as e:
|
| 113 |
+
return (f"β Error preparing model for inference: {str(e)}\n\n"
|
| 114 |
+
"This can happen if the saved object is not a proper torch.nn.Module or if tensors couldn't be mapped to the current device.")
|
| 115 |
+
|
| 116 |
+
config_info = f"""β
Model loaded successfully!
|
| 117 |
+
|
| 118 |
+
π Model Configuration:
|
| 119 |
+
ββββββββββββββββββββββββββββββββββββββββ
|
| 120 |
+
β’ Base Model: {loaded_config.get('model_name', 'GPT-2')}
|
| 121 |
+
β’ Training Epochs: {loaded_config.get('num_epochs', 'N/A')}
|
| 122 |
+
β’ Training Samples: {loaded_config.get('training_samples', 'N/A'):,}
|
| 123 |
+
β’ Validation Samples: {loaded_config.get('validation_samples', 'N/A'):,}
|
| 124 |
+
β’ BLEU Score: {loaded_config.get('bleu_score', 0):.4f}
|
| 125 |
+
β’ Perplexity: {loaded_config.get('perplexity', 0):.2f}
|
| 126 |
+
β’ Final Loss: {loaded_config.get('final_loss', 0):.4f}
|
| 127 |
+
β’ Device: {device}
|
| 128 |
+
ββββββββββββββββββββββββββββββββββββββββ
|
| 129 |
+
|
| 130 |
+
π Model is ready to generate code!
|
| 131 |
+
"""
|
| 132 |
+
|
| 133 |
+
return config_info
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
# Final catch-all for any unexpected errors
|
| 137 |
+
err = str(e)
|
| 138 |
+
return f"β Unexpected error loading model: {err}\n\nPlease ensure best_model.pkl is properly uploaded and compatible with this environment."
|
| 139 |
+
|
| 140 |
+
def calculate_bleu_score(reference, hypothesis):
|
| 141 |
+
"""Calculate BLEU score between reference and generated code"""
|
| 142 |
+
try:
|
| 143 |
+
# Tokenize
|
| 144 |
+
ref_tokens = word_tokenize(reference.lower())
|
| 145 |
+
hyp_tokens = word_tokenize(hypothesis.lower())
|
| 146 |
+
|
| 147 |
+
# Calculate BLEU with smoothing
|
| 148 |
+
smooth = SmoothingFunction()
|
| 149 |
+
bleu_1 = sentence_bleu([ref_tokens], hyp_tokens, weights=(1, 0, 0, 0), smoothing_function=smooth.method1)
|
| 150 |
+
bleu_2 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.5, 0.5, 0, 0), smoothing_function=smooth.method1)
|
| 151 |
+
bleu_3 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.33, 0.33, 0.33, 0), smoothing_function=smooth.method1)
|
| 152 |
+
bleu_4 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth.method1)
|
| 153 |
+
|
| 154 |
+
return bleu_1, bleu_2, bleu_3, bleu_4
|
| 155 |
+
except Exception as e:
|
| 156 |
+
return 0.0, 0.0, 0.0, 0.0
|
| 157 |
+
|
| 158 |
+
def calculate_code_metrics(reference, generated):
|
| 159 |
+
"""Calculate various code similarity metrics"""
|
| 160 |
+
try:
|
| 161 |
+
# Length ratio
|
| 162 |
+
len_ratio = len(generated) / max(len(reference), 1)
|
| 163 |
+
|
| 164 |
+
# Word overlap
|
| 165 |
+
ref_words = set(reference.lower().split())
|
| 166 |
+
gen_words = set(generated.lower().split())
|
| 167 |
+
|
| 168 |
+
if len(ref_words) > 0:
|
| 169 |
+
precision = len(ref_words.intersection(gen_words)) / len(gen_words) if len(gen_words) > 0 else 0
|
| 170 |
+
recall = len(ref_words.intersection(gen_words)) / len(ref_words)
|
| 171 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
| 172 |
+
else:
|
| 173 |
+
precision = recall = f1 = 0
|
| 174 |
+
|
| 175 |
+
# Character-level similarity
|
| 176 |
+
char_overlap = sum(1 for c in generated if c in reference) / max(len(generated), 1)
|
| 177 |
+
|
| 178 |
+
return {
|
| 179 |
+
'length_ratio': len_ratio,
|
| 180 |
+
'precision': precision,
|
| 181 |
+
'recall': recall,
|
| 182 |
+
'f1_score': f1,
|
| 183 |
+
'char_overlap': char_overlap
|
| 184 |
+
}
|
| 185 |
+
except Exception as e:
|
| 186 |
+
return {
|
| 187 |
+
'length_ratio': 0,
|
| 188 |
+
'precision': 0,
|
| 189 |
+
'recall': 0,
|
| 190 |
+
'f1_score': 0,
|
| 191 |
+
'char_overlap': 0
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
def generate_code_from_pseudo(pseudo_code, max_length, temperature, top_k, top_p, num_sequences, reference_code):
|
| 195 |
+
"""Generate code from pseudo-code using loaded model"""
|
| 196 |
+
global loaded_model, loaded_tokenizer, generation_history
|
| 197 |
+
|
| 198 |
+
if loaded_model is None or loaded_tokenizer is None:
|
| 199 |
+
return "β Please upload and load a model first!", "", "", ""
|
| 200 |
+
|
| 201 |
+
if not pseudo_code.strip():
|
| 202 |
+
return "β Please enter pseudo-code description!", "", "", ""
|
| 203 |
+
|
| 204 |
+
try:
|
| 205 |
+
start_time = time.time()
|
| 206 |
+
|
| 207 |
+
# Format input
|
| 208 |
+
prompt = f"<PSEUDO> {pseudo_code.strip()} <SEP> <CODE>"
|
| 209 |
+
|
| 210 |
+
# Tokenize
|
| 211 |
+
device = next(loaded_model.parameters()).device
|
| 212 |
+
inputs = loaded_tokenizer(prompt, return_tensors='pt').to(device)
|
| 213 |
+
|
| 214 |
+
# Generate (ensure type safety for parameters)
|
| 215 |
+
with torch.no_grad():
|
| 216 |
+
outputs = loaded_model.generate(
|
| 217 |
+
**inputs,
|
| 218 |
+
max_length=int(max_length),
|
| 219 |
+
temperature=float(temperature),
|
| 220 |
+
top_k=int(top_k),
|
| 221 |
+
top_p=float(top_p),
|
| 222 |
+
do_sample=True,
|
| 223 |
+
num_return_sequences=int(num_sequences),
|
| 224 |
+
pad_token_id=loaded_tokenizer.pad_token_id,
|
| 225 |
+
eos_token_id=loaded_tokenizer.eos_token_id,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
generation_time = time.time() - start_time
|
| 229 |
+
|
| 230 |
+
# Decode all sequences
|
| 231 |
+
generated_codes = []
|
| 232 |
+
for output in outputs:
|
| 233 |
+
generated = loaded_tokenizer.decode(output, skip_special_tokens=False)
|
| 234 |
+
|
| 235 |
+
# Extract code part
|
| 236 |
+
if '<CODE>' in generated:
|
| 237 |
+
code = generated.split('<CODE>')[-1].strip()
|
| 238 |
+
# Remove special tokens
|
| 239 |
+
code = code.replace('<PAD>', '').replace('<SEP>', '').strip()
|
| 240 |
+
else:
|
| 241 |
+
code = generated
|
| 242 |
+
|
| 243 |
+
generated_codes.append(code)
|
| 244 |
+
|
| 245 |
+
# Use the first generated code as primary output
|
| 246 |
+
primary_code = generated_codes[0]
|
| 247 |
+
|
| 248 |
+
# Calculate metrics if reference code is provided
|
| 249 |
+
metrics_output = ""
|
| 250 |
+
bleu_output = ""
|
| 251 |
+
|
| 252 |
+
if reference_code and reference_code.strip():
|
| 253 |
+
# Calculate BLEU scores
|
| 254 |
+
bleu_1, bleu_2, bleu_3, bleu_4 = calculate_bleu_score(reference_code, primary_code)
|
| 255 |
+
|
| 256 |
+
bleu_output = f"""π BLEU Scores:
|
| 257 |
+
ββββββββββββββββββββββββββββββββββββββββ
|
| 258 |
+
β’ BLEU-1 (Unigram): {bleu_1:.4f} ({bleu_1*100:.2f}%)
|
| 259 |
+
β’ BLEU-2 (Bigram): {bleu_2:.4f} ({bleu_2*100:.2f}%)
|
| 260 |
+
β’ BLEU-3 (Trigram): {bleu_3:.4f} ({bleu_3*100:.2f}%)
|
| 261 |
+
β’ BLEU-4 (4-gram): {bleu_4:.4f} ({bleu_4*100:.2f}%)
|
| 262 |
+
ββββββββββββββββββββββββββββββββββββββββ
|
| 263 |
+
|
| 264 |
+
π‘ Interpretation:
|
| 265 |
+
β’ BLEU > 0.4: Excellent match
|
| 266 |
+
β’ BLEU 0.3-0.4: Good match
|
| 267 |
+
β’ BLEU 0.2-0.3: Fair match
|
| 268 |
+
β’ BLEU < 0.2: Poor match
|
| 269 |
+
"""
|
| 270 |
+
|
| 271 |
+
# Calculate additional metrics
|
| 272 |
+
code_metrics = calculate_code_metrics(reference_code, primary_code)
|
| 273 |
+
|
| 274 |
+
metrics_output = f"""π Additional Metrics:
|
| 275 |
+
ββββββββββββββββββββββββββββββββββββββββ
|
| 276 |
+
β’ Length Ratio: {code_metrics['length_ratio']:.3f}
|
| 277 |
+
β’ Precision: {code_metrics['precision']:.4f} ({code_metrics['precision']*100:.2f}%)
|
| 278 |
+
β’ Recall: {code_metrics['recall']:.4f} ({code_metrics['recall']*100:.2f}%)
|
| 279 |
+
β’ F1-Score: {code_metrics['f1_score']:.4f} ({code_metrics['f1_score']*100:.2f}%)
|
| 280 |
+
β’ Character Overlap: {code_metrics['char_overlap']:.4f} ({code_metrics['char_overlap']*100:.2f}%)
|
| 281 |
+
ββββββββββββββββββββββββββββββββββββββββ
|
| 282 |
+
|
| 283 |
+
β±οΈ Generation Time: {generation_time:.2f}s
|
| 284 |
+
π Sequences Generated: {num_sequences}
|
| 285 |
+
π’ Output Length: {len(primary_code)} characters
|
| 286 |
+
ββββββββββββββββββββββββββββββββββββββββ
|
| 287 |
+
"""
|
| 288 |
+
else:
|
| 289 |
+
metrics_output = f"""β±οΈ Generation Time: {generation_time:.2f}s
|
| 290 |
+
π Sequences Generated: {num_sequences}
|
| 291 |
+
π’ Output Length: {len(primary_code)} characters
|
| 292 |
+
|
| 293 |
+
π‘ Tip: Provide reference code to see BLEU scores and similarity metrics!
|
| 294 |
+
"""
|
| 295 |
+
|
| 296 |
+
# Format alternative sequences
|
| 297 |
+
alternatives = ""
|
| 298 |
+
if num_sequences > 1:
|
| 299 |
+
alternatives = "π Alternative Generations:\n" + "β"*50 + "\n\n"
|
| 300 |
+
for i, code in enumerate(generated_codes[1:], 2):
|
| 301 |
+
alternatives += f"Variation {i}:\n```python\n{code}\n```\n\n"
|
| 302 |
+
|
| 303 |
+
# Add to history
|
| 304 |
+
generation_history.append({
|
| 305 |
+
'pseudo': pseudo_code,
|
| 306 |
+
'generated': primary_code,
|
| 307 |
+
'bleu_4': bleu_4 if reference_code else None,
|
| 308 |
+
'time': generation_time
|
| 309 |
+
})
|
| 310 |
+
|
| 311 |
+
return primary_code, metrics_output, bleu_output, alternatives
|
| 312 |
+
|
| 313 |
+
except Exception as e:
|
| 314 |
+
return f"β Error generating code: {str(e)}", "", "", ""
|
| 315 |
+
|
| 316 |
+
def show_examples(example_name):
|
| 317 |
+
"""Load example pseudo-code"""
|
| 318 |
+
examples = {
|
| 319 |
+
"Basic Loop": "create a list of numbers from 1 to 10",
|
| 320 |
+
"Function Definition": "define a function to calculate the sum of two numbers",
|
| 321 |
+
"List Iteration": "iterate through a list and print each element",
|
| 322 |
+
"Conditional Check": "check if a number is even or odd",
|
| 323 |
+
"Sorting": "sort a list in descending order",
|
| 324 |
+
"Maximum Element": "create a function to find maximum element in array",
|
| 325 |
+
"Binary Search": "implement binary search algorithm",
|
| 326 |
+
"Factorial": "create a recursive function to calculate factorial",
|
| 327 |
+
"Palindrome": "check if a string is palindrome",
|
| 328 |
+
"Fibonacci": "generate fibonacci sequence up to n terms"
|
| 329 |
+
}
|
| 330 |
+
return examples.get(example_name, "")
|
| 331 |
+
|
| 332 |
+
def clear_all():
|
| 333 |
+
"""Clear all inputs and outputs"""
|
| 334 |
+
return "", "", "", "", "", 150, 0.7, 50, 0.95, 1
|
| 335 |
+
|
| 336 |
+
def show_history():
|
| 337 |
+
"""Display generation history"""
|
| 338 |
+
if not generation_history:
|
| 339 |
+
return "No generation history yet. Start generating code!"
|
| 340 |
+
|
| 341 |
+
history_text = "π Generation History:\n" + "="*60 + "\n\n"
|
| 342 |
+
|
| 343 |
+
for i, entry in enumerate(reversed(generation_history[-10:]), 1): # Show last 10
|
| 344 |
+
history_text += f"{i}. Pseudo: {entry['pseudo'][:60]}...\n"
|
| 345 |
+
history_text += f" Time: {entry['time']:.2f}s"
|
| 346 |
+
if entry['bleu_4'] is not None:
|
| 347 |
+
history_text += f" | BLEU-4: {entry['bleu_4']:.4f}"
|
| 348 |
+
history_text += f"\n Code: {entry['generated'][:80]}...\n\n"
|
| 349 |
+
|
| 350 |
+
return history_text
|
| 351 |
+
|
| 352 |
+
# Create Gradio interface with custom CSS
|
| 353 |
+
custom_css = """
|
| 354 |
+
.gradio-container {
|
| 355 |
+
font-family: 'Arial', sans-serif;
|
| 356 |
+
}
|
| 357 |
+
.output-code {
|
| 358 |
+
font-family: 'Courier New', monospace;
|
| 359 |
+
font-size: 14px;
|
| 360 |
+
}
|
| 361 |
+
.metrics-box {
|
| 362 |
+
background-color: #f0f8ff;
|
| 363 |
+
border-radius: 8px;
|
| 364 |
+
padding: 10px;
|
| 365 |
+
}
|
| 366 |
+
"""
|
| 367 |
+
|
| 368 |
+
with gr.Blocks(title="π GPT-2 Pseudo-Code to Code Generator", theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 369 |
+
|
| 370 |
+
gr.Markdown("""
|
| 371 |
+
# π GPT-2 Pseudo-Code to Python Code Generator
|
| 372 |
+
|
| 373 |
+
**Transform natural language descriptions into executable Python code using fine-tuned GPT-2!**
|
| 374 |
+
|
| 375 |
+
This model is trained on the SPOC (Search-based Pseudo-code to Code) dataset and can generate Python code from pseudo-code descriptions.
|
| 376 |
+
""")
|
| 377 |
+
|
| 378 |
+
with gr.Tabs():
|
| 379 |
+
# Tab 1: Code Generation
|
| 380 |
+
with gr.Tab("π» Code Generation"):
|
| 381 |
+
with gr.Row():
|
| 382 |
+
with gr.Column(scale=1):
|
| 383 |
+
gr.Markdown("### οΏ½ Model Status")
|
| 384 |
+
model_status = gr.Textbox(
|
| 385 |
+
label="Model Information",
|
| 386 |
+
lines=15,
|
| 387 |
+
interactive=False,
|
| 388 |
+
value=initialize_model() # Auto-load on startup
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
gr.Markdown("---")
|
| 392 |
+
|
| 393 |
+
with gr.Row():
|
| 394 |
+
with gr.Column(scale=1):
|
| 395 |
+
gr.Markdown("### βοΈ Enter Pseudo-Code")
|
| 396 |
+
|
| 397 |
+
# Example selector
|
| 398 |
+
with gr.Row():
|
| 399 |
+
example_dropdown = gr.Dropdown(
|
| 400 |
+
choices=["Basic Loop", "Function Definition", "List Iteration",
|
| 401 |
+
"Conditional Check", "Sorting", "Maximum Element",
|
| 402 |
+
"Binary Search", "Factorial", "Palindrome", "Fibonacci"],
|
| 403 |
+
label="π Load Example",
|
| 404 |
+
value=None
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
pseudo_input = gr.Textbox(
|
| 408 |
+
label="Pseudo-Code Description",
|
| 409 |
+
placeholder="Example: create a function to calculate factorial of a number",
|
| 410 |
+
lines=4
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
reference_code = gr.Textbox(
|
| 414 |
+
label="Reference Code (Optional - for BLEU score calculation)",
|
| 415 |
+
placeholder="Paste reference code here to calculate BLEU scores...",
|
| 416 |
+
lines=4
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
gr.Markdown("### βοΈ Generation Parameters")
|
| 420 |
+
with gr.Row():
|
| 421 |
+
max_length = gr.Slider(
|
| 422 |
+
minimum=50,
|
| 423 |
+
maximum=500,
|
| 424 |
+
value=150,
|
| 425 |
+
step=10,
|
| 426 |
+
label="Max Length",
|
| 427 |
+
info="Maximum tokens to generate"
|
| 428 |
+
)
|
| 429 |
+
temperature = gr.Slider(
|
| 430 |
+
minimum=0.1,
|
| 431 |
+
maximum=1.5,
|
| 432 |
+
value=0.7,
|
| 433 |
+
step=0.1,
|
| 434 |
+
label="Temperature",
|
| 435 |
+
info="Higher = more creative"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
with gr.Row():
|
| 439 |
+
top_k = gr.Slider(
|
| 440 |
+
minimum=10,
|
| 441 |
+
maximum=100,
|
| 442 |
+
value=50,
|
| 443 |
+
step=5,
|
| 444 |
+
label="Top-K",
|
| 445 |
+
info="Vocabulary filtering"
|
| 446 |
+
)
|
| 447 |
+
top_p = gr.Slider(
|
| 448 |
+
minimum=0.5,
|
| 449 |
+
maximum=1.0,
|
| 450 |
+
value=0.95,
|
| 451 |
+
step=0.05,
|
| 452 |
+
label="Top-P",
|
| 453 |
+
info="Nucleus sampling"
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
num_sequences = gr.Slider(
|
| 457 |
+
minimum=1,
|
| 458 |
+
maximum=5,
|
| 459 |
+
value=1,
|
| 460 |
+
step=1,
|
| 461 |
+
label="Number of Variations",
|
| 462 |
+
info="Generate multiple versions"
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
with gr.Row():
|
| 466 |
+
generate_btn = gr.Button("β¨ Generate Code", variant="primary", size="lg")
|
| 467 |
+
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
| 468 |
+
|
| 469 |
+
with gr.Column(scale=1):
|
| 470 |
+
gr.Markdown("### π» Generated Python Code")
|
| 471 |
+
code_output = gr.Code(
|
| 472 |
+
label="Generated Code",
|
| 473 |
+
language="python",
|
| 474 |
+
lines=12,
|
| 475 |
+
elem_classes="output-code"
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
with gr.Row():
|
| 479 |
+
with gr.Column():
|
| 480 |
+
metrics_output = gr.Textbox(
|
| 481 |
+
label="π Performance Metrics",
|
| 482 |
+
lines=8,
|
| 483 |
+
interactive=False,
|
| 484 |
+
elem_classes="metrics-box"
|
| 485 |
+
)
|
| 486 |
+
with gr.Column():
|
| 487 |
+
bleu_output = gr.Textbox(
|
| 488 |
+
label="π― BLEU Scores",
|
| 489 |
+
lines=8,
|
| 490 |
+
interactive=False,
|
| 491 |
+
elem_classes="metrics-box"
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
alternatives_output = gr.Markdown(
|
| 495 |
+
label="π Alternative Generations"
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
# Tab 2: Information & Guide
|
| 499 |
+
with gr.Tab("π Guide & Examples"):
|
| 500 |
+
gr.Markdown("""
|
| 501 |
+
## π How to Use
|
| 502 |
+
|
| 503 |
+
### 1οΈβ£ Load Your Model
|
| 504 |
+
- Upload the `best_model.pkl` file (trained GPT-2 model)
|
| 505 |
+
- Click "Load Model" and wait for confirmation
|
| 506 |
+
- You'll see model configuration and training metrics
|
| 507 |
+
|
| 508 |
+
### 2οΈβ£ Generate Code
|
| 509 |
+
- **Quick Start**: Select an example from the dropdown
|
| 510 |
+
- **Custom Input**: Type your own pseudo-code description
|
| 511 |
+
- **Optional**: Add reference code to calculate BLEU scores
|
| 512 |
+
- Adjust generation parameters for different outputs
|
| 513 |
+
- Click "Generate Code"
|
| 514 |
+
|
| 515 |
+
### 3οΈβ£ Understand the Metrics
|
| 516 |
+
|
| 517 |
+
#### π― BLEU Score (Bilingual Evaluation Understudy)
|
| 518 |
+
- Measures similarity between generated and reference code
|
| 519 |
+
- **BLEU-1**: Word-level similarity (unigrams)
|
| 520 |
+
- **BLEU-2**: 2-word phrase similarity (bigrams)
|
| 521 |
+
- **BLEU-3**: 3-word phrase similarity (trigrams)
|
| 522 |
+
- **BLEU-4**: 4-word phrase similarity (most comprehensive)
|
| 523 |
+
|
| 524 |
+
**Score Interpretation:**
|
| 525 |
+
- π’ **> 0.4**: Excellent match - Generated code is very similar to reference
|
| 526 |
+
- π‘ **0.3-0.4**: Good match - Code captures most key elements
|
| 527 |
+
- π **0.2-0.3**: Fair match - Some similarity exists
|
| 528 |
+
- π΄ **< 0.2**: Poor match - Significant differences
|
| 529 |
+
|
| 530 |
+
#### π Additional Metrics
|
| 531 |
+
- **Precision**: How many generated words appear in reference
|
| 532 |
+
- **Recall**: How many reference words appear in generated code
|
| 533 |
+
- **F1-Score**: Harmonic mean of precision and recall
|
| 534 |
+
- **Length Ratio**: Generated vs reference code length
|
| 535 |
+
- **Character Overlap**: Character-level similarity
|
| 536 |
+
|
| 537 |
+
### ποΈ Generation Parameters
|
| 538 |
+
|
| 539 |
+
| Parameter | Low Value | High Value | Use Case |
|
| 540 |
+
|-----------|-----------|------------|----------|
|
| 541 |
+
| **Temperature** | 0.1-0.3 | 0.8-1.2 | Low: Deterministic, focused<br>High: Creative, diverse |
|
| 542 |
+
| **Top-K** | 10-30 | 60-100 | Low: Conservative choices<br>High: More variety |
|
| 543 |
+
| **Top-P** | 0.5-0.8 | 0.9-1.0 | Low: Safe predictions<br>High: Exploratory |
|
| 544 |
+
| **Max Length** | 50-100 | 200-500 | Short: Simple code<br>Long: Complex implementations |
|
| 545 |
+
|
| 546 |
+
---
|
| 547 |
+
|
| 548 |
+
## π‘ Example Pseudo-Code Prompts
|
| 549 |
+
|
| 550 |
+
### Basic Operations
|
| 551 |
+
```
|
| 552 |
+
create a list of numbers from 1 to 10
|
| 553 |
+
define a function to calculate the sum of two numbers
|
| 554 |
+
iterate through a list and print each element
|
| 555 |
+
```
|
| 556 |
+
|
| 557 |
+
### Conditionals & Logic
|
| 558 |
+
```
|
| 559 |
+
check if a number is even or odd
|
| 560 |
+
find the maximum of three numbers
|
| 561 |
+
validate if a string is empty
|
| 562 |
+
```
|
| 563 |
+
|
| 564 |
+
### Data Structures
|
| 565 |
+
```
|
| 566 |
+
sort a list in descending order
|
| 567 |
+
remove duplicates from a list
|
| 568 |
+
merge two dictionaries
|
| 569 |
+
```
|
| 570 |
+
|
| 571 |
+
### Algorithms
|
| 572 |
+
```
|
| 573 |
+
implement binary search algorithm
|
| 574 |
+
create a recursive function to calculate factorial
|
| 575 |
+
generate fibonacci sequence up to n terms
|
| 576 |
+
check if a string is palindrome
|
| 577 |
+
```
|
| 578 |
+
|
| 579 |
+
### Advanced
|
| 580 |
+
```
|
| 581 |
+
create a class to represent a student with name and grades
|
| 582 |
+
implement a function to read CSV file and return dataframe
|
| 583 |
+
create a decorator to measure function execution time
|
| 584 |
+
```
|
| 585 |
+
|
| 586 |
+
---
|
| 587 |
+
|
| 588 |
+
## π About the Model
|
| 589 |
+
|
| 590 |
+
This model is fine-tuned on the **SPOC (Search-based Pseudo-code to Code)** dataset:
|
| 591 |
+
- π Paper: [SPOC: Search-based Pseudo-code to Code](https://arxiv.org/pdf/1906.04908)
|
| 592 |
+
- ποΈ Source: Stanford University
|
| 593 |
+
- π€ Base Model: GPT-2 (Decoder-Only Transformer)
|
| 594 |
+
- π Training: 10,000+ pseudo-code to code pairs
|
| 595 |
+
- π― Task: Causal Language Modeling
|
| 596 |
+
|
| 597 |
+
---
|
| 598 |
+
|
| 599 |
+
## β οΈ Limitations
|
| 600 |
+
|
| 601 |
+
- Model may not handle very complex algorithms perfectly
|
| 602 |
+
- Generated code should be tested before production use
|
| 603 |
+
- Best results with clear, specific pseudo-code descriptions
|
| 604 |
+
- Model trained on C++ code, adapted for Python generation
|
| 605 |
+
|
| 606 |
+
---
|
| 607 |
+
|
| 608 |
+
## π€ Tips for Best Results
|
| 609 |
+
|
| 610 |
+
1. β
**Be Specific**: "create a function to sort list in ascending order" vs "sort list"
|
| 611 |
+
2. β
**Use Action Words**: "create", "define", "implement", "calculate"
|
| 612 |
+
3. β
**Mention Data Types**: "list", "string", "dictionary", "integer"
|
| 613 |
+
4. β
**Include Details**: "recursive function" vs just "function"
|
| 614 |
+
5. β
**Try Variations**: Generate multiple times with different temperatures
|
| 615 |
+
|
| 616 |
+
""")
|
| 617 |
+
|
| 618 |
+
# Tab 3: History
|
| 619 |
+
with gr.Tab("π History"):
|
| 620 |
+
gr.Markdown("## π Generation History")
|
| 621 |
+
history_display = gr.Textbox(
|
| 622 |
+
label="Recent Generations",
|
| 623 |
+
lines=20,
|
| 624 |
+
interactive=False
|
| 625 |
+
)
|
| 626 |
+
refresh_history_btn = gr.Button("π Refresh History", variant="secondary")
|
| 627 |
+
|
| 628 |
+
gr.Markdown("""
|
| 629 |
+
---
|
| 630 |
+
### π Features
|
| 631 |
+
- β
Upload and use custom trained models
|
| 632 |
+
- β
BLEU score calculation for quality assessment
|
| 633 |
+
- β
Multiple evaluation metrics (Precision, Recall, F1)
|
| 634 |
+
- β
Generate multiple code variations
|
| 635 |
+
- β
Real-time performance tracking
|
| 636 |
+
- β
Example prompts library
|
| 637 |
+
- β
Generation history
|
| 638 |
+
|
| 639 |
+
### π Citation
|
| 640 |
+
If you use this model, please cite:
|
| 641 |
+
```
|
| 642 |
+
@article{kulal2019spoc,
|
| 643 |
+
title={SPOC: Search-based Pseudo-code to Code},
|
| 644 |
+
author={Kulal, Sumith and Pasupat, Panupong and Chandra, Kartik and Lee, Mina and Padon, Oded and Aiken, Alex and Liang, Percy},
|
| 645 |
+
journal={arXiv preprint arXiv:1906.04908},
|
| 646 |
+
year={2019}
|
| 647 |
+
}
|
| 648 |
+
```
|
| 649 |
+
|
| 650 |
+
**Built with β€οΈ using HuggingFace Transformers & Gradio**
|
| 651 |
+
""")
|
| 652 |
+
|
| 653 |
+
# Event handlers
|
| 654 |
+
example_dropdown.change(
|
| 655 |
+
fn=show_examples,
|
| 656 |
+
inputs=[example_dropdown],
|
| 657 |
+
outputs=[pseudo_input]
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
generate_btn.click(
|
| 661 |
+
fn=generate_code_from_pseudo,
|
| 662 |
+
inputs=[pseudo_input, max_length, temperature, top_k, top_p, num_sequences, reference_code],
|
| 663 |
+
outputs=[code_output, metrics_output, bleu_output, alternatives_output]
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
clear_btn.click(
|
| 667 |
+
fn=clear_all,
|
| 668 |
+
inputs=[],
|
| 669 |
+
outputs=[pseudo_input, reference_code, code_output, metrics_output, bleu_output,
|
| 670 |
+
max_length, temperature, top_k, top_p, num_sequences]
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
refresh_history_btn.click(
|
| 674 |
+
fn=show_history,
|
| 675 |
+
inputs=[],
|
| 676 |
+
outputs=[history_display]
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
# Launch the interface
|
| 680 |
+
if __name__ == "__main__":
|
| 681 |
+
demo.launch(share=False)
|