File size: 4,579 Bytes
93a19af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import json
import logging
import tempfile
import uuid
from typing import Optional, Union, Dict, List, Any

import pyarrow as pa
import pyarrow.parquet as pq
from huggingface_hub import CommitScheduler
from huggingface_hub.hf_api import HfApi

logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
logger = logging.getLogger(__name__)

def load_scheduler():
    return ParquetScheduler(
        repo_id="hannahcyberey/Refusal-Steering-Logs", every=10,
        private=True,
        squash_history=False,
        schema={
            "session_id": {"_type": "Value", "dtype": "string"},
            "prompt": {"_type": "Value", "dtype": "string"},
            "steering": {"_type": "Value", "dtype": "bool"},
            "coeff": {"_type": "Value", "dtype": "float64"},
            "top_p": {"_type": "Value", "dtype": "float64"},
            "temperature": {"_type": "Value", "dtype": "float64"},
            "output": {"_type": "Value", "dtype": "string"},
            "upvote": {"_type": "Value", "dtype": "bool"},
            "timestamp": {"_type": "Value", "dtype": "string"},
        }
    )


class ParquetScheduler(CommitScheduler):
    """
    Reference: https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
    Usage: 
        Configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 
        1 `.append` call will result in 1 row in your final dataset.

    List of possible dtypes: 
        https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.

    ```py
    # Start scheduler
    >>> scheduler = ParquetScheduler(
    ...     repo_id="my-parquet-dataset",
    ...     schema={
    ...         "prompt": {"_type": "Value", "dtype": "string"},
    ...         "negative_prompt": {"_type": "Value", "dtype": "string"},
    ...         "guidance_scale": {"_type": "Value", "dtype": "int64"},
    ...         "image": {"_type": "Image"},
    ...     },
    ... )

    # Append some data to be uploaded
    >>> scheduler.append({...})
    """

    def __init__(
        self,
        *,
        repo_id: str,
        schema: Dict[str, Dict[str, str]],
        every: Union[int, float] = 5, # Number of minutes between each commits
        path_in_repo: Optional[str] = "data",
        repo_type: Optional[str] = "dataset",
        revision: Optional[str] = None,
        private: bool = False,
        token: Optional[str] = None,
        allow_patterns: Union[List[str], str, None] = None,
        ignore_patterns: Union[List[str], str, None] = None,
        squash_history: Optional[bool] = False,
        hf_api: Optional[HfApi] = None,
    ) -> None:
        super().__init__(
            repo_id=repo_id,
            folder_path="dummy",  # not used by the scheduler
            every=every,
            path_in_repo=path_in_repo,
            repo_type=repo_type,
            revision=revision,
            private=private,
            token=token,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            squash_history=squash_history,
            hf_api=hf_api,
        )

        self._rows: List[Dict[str, Any]] = []
        self._schema = schema

    def append(self, row: Dict[str, Any]) -> None:
        """Add a new item to be uploaded."""
        with self.lock:
            self._rows.append(row)

    def push_to_hub(self):
        # Check for new rows to push
        with self.lock:
            rows = self._rows
            self._rows = []
        if not rows:
            return
        logger.info("Got %d item(s) to commit.", len(rows))

        # Complete rows if needed
        for row in rows:
            for feature in self._schema:
                if feature not in row:
                    row[feature] = None

        # Export items to Arrow format
        table = pa.Table.from_pylist(rows)

        # Add metadata (used by datasets library)
        table = table.replace_schema_metadata(
            {"huggingface": json.dumps({"info": {"features": self._schema}})}
        )

        # Write to parquet file
        archive_file = tempfile.NamedTemporaryFile()
        pq.write_table(table, archive_file.name)

        # Upload
        self.api.upload_file(
            repo_id=self.repo_id,
            repo_type=self.repo_type,
            revision=self.revision,
            path_in_repo=f"{uuid.uuid4()}.parquet",
            path_or_fileobj=archive_file.name,
        )
        logging.info("Commit completed.")

        # Cleanup
        archive_file.close()