Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,329 Bytes
05fb4ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
from PIL import Image
from pathlib import Path
from typing import *
from einops import rearrange
import numpy as np
import torch
import os
import shutil
import cv2
# from util.image import scale_image, random_tight_crop, tight_crop_image,random_tight_crop_imgonly
# from util.load import load_array, load_image,load_npz
# from util.mapping import scale_map, tight_crop_map, tight_crop_map_docaligner
# from inv3d_util.mask import scale_mask, tight_crop_mask
from torchvision.utils import save_image as tv_save_image
import torch.nn.functional as F
def training_init(args):
local_rank = int(os.environ["LOCAL_RANK"])
torch.distributed.init_process_group('nccl', init_method='env://')
device = torch.device(f'cuda:{local_rank}')
torch.cuda.manual_seed_all(40)
# create model
torch.cuda.set_device(local_rank)
torch.cuda.empty_cache()
return local_rank
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
def has_file_allowed_extension(filename, extensions):
return filename.lower().endswith(extensions)
def is_image_file(filename):
return has_file_allowed_extension(filename, IMG_EXTENSIONS)
def pil_loader(path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def pil_loader_withHW(path):
with open(path, 'rb') as f:
img = Image.open(f)
width, height = img.size
return img.convert('RGB'), height, width
def cv2_loader_withHW(path):
# with open(path, 'rb') as f:
img = cv2.imread(path,flags=cv2.IMREAD_COLOR)
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
height, width, channels = img.shape
return img, height, width
def collate_batch(batch_list):
data1 = [item[0] for item in batch_list]
data2 = [item[1] for item in batch_list]
labels = [item[2] for item in batch_list]
return data1, data2, labels
# data1 = [item[0] for item in batch_list]
# labels = [item[1] for item in batch_list]
# return data1, labels
# # features = torch.stack([sample[0] for sample in batch])
# # labels = torch.stack([sample[1] for sample in batch])
# # return features,labels
def select_max_region(mask):
nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
background = 0
for row in range(stats.shape[0]):
if stats[row, :][0] == 0 and stats[row, :][1] == 0:
background = row
stats_no_bg = np.delete(stats, background, axis=0)
max_idx = stats_no_bg[:, 4].argmax()
max_region = np.where(labels==max_idx+1, 1, 0)
return max_region
def docreg_bm_norm(file: str, resolution: Optional[int]):
file = Path(file)
bm = np.load(file)[file.name[:-4]][0] # (4032, 3024, 2) numpy
bm = ((bm+1)/2)*resolution # (0-288)
bm = scale_map(bm, resolution) # (288, 288, 2)
bm = rearrange(bm, "h w c -> c h w") # (2, 288, 288)
bm = torch.from_numpy(bm).float() # *resolution # tensor 0-288
return bm
def prepare_image(
image_file: Path, mask_file: Path, color_jitter: bool, **scale_settings
):
image = load_image(image_file) # (1770, 1327, 3)
# mask = load_image(mask_file)[..., :1] # (1770, 1327, 1)
mask = load_npz(mask_file)[..., :1].astype(np.uint8)
mask = select_max_region(mask)
H,W,_ = image.shape
# test point
# image = scale_image(image, **scale_settings) # (288, 288, 3)
# image = rearrange(image, "h w c -> c h w")
# image = image.astype("float32") / 255
# image = torch.from_numpy(image)
# flow = load_array(flow_file) # (1024, 1024, 2)
# flow = rearrange(flow, "h w c -> c h w")
# flow = torch.from_numpy(flow).float()
# B2A = spatial_trans(image, flow[None], 0)
# tv_save_image(image, "backup/test/ori.png")
# tv_save_image(B2A[0], "backup/test/ttt.png")
# assert image.shape[0]>0,print("input",image.shape)
# assert image.shape[1]>0,print("input",image.shape)
# image = tight_crop_image(image, mask.squeeze()) # (349, 245, 3)
image,t,b,l,r = random_tight_crop_imgonly(mask,image,H,W)
assert image.shape[0]>0, print("crop",image.shape)
assert image.shape[1]>0, print("crop",image.shape)
image = scale_image(image, **scale_settings) # (288, 288, 3)
# image = transforms.ColorJitter(0.2, 0.2, 0.2, 0.2)(image) if color_jitter else image
image = rearrange(image, "h w c -> c h w")
image = image.astype("float32") / 255
image = torch.from_numpy(image)
# recon = scale_image(recon, **scale_settings) # (288, 288, 3)
# img_pil = Image.fromarray(image)
# image = transfrom(img_pil)
# t,b,l,r = None,None,None,None
return image,t,b,l,r,H,W
def prepare_masked_image(
image_file: Path, recon_file: Path, transfrom, uv_file: Path, color_jitter: bool, **scale_settings
):
mask = load_array(uv_file)[..., :1] # [448,448,1]
image = load_image(image_file) # (448, 448, 3)
recon = load_image(recon_file) # (448, 448, 3)
# assert image.shape[0]>0,print("input",image.shape)
# assert image.shape[1]>0,print("input",image.shape)
# image = tight_crop_image(image, mask.squeeze()) # (349, 245, 3)
image,recon,t,b,l,r = random_tight_crop(mask,image,recon)
assert image.shape[0]>0, print("crop",image.shape)
assert image.shape[1]>0, print("crop",image.shape)
# image = scale_image(image, **scale_settings) # (288, 288, 3)
# recon = scale_image(recon, **scale_settings) # (288, 288, 3)
# image = transforms.ColorJitter(0.2, 0.2, 0.2, 0.2)(image) if color_jitter else image
img_pil = Image.fromarray(image)
recon_pil = Image.fromarray(recon)
image = transfrom(img_pil)
recon = transfrom(recon_pil)
# image = rearrange(image, "h w c -> c h w")
# image = image.astype("float32") / 255
# image = torch.from_numpy(image)
# recon = rearrange(recon, "h w c -> c h w")
# recon = recon.astype("float32") / 255
# recon = torch.from_numpy(recon)
return image,recon,t,b,l,r
def prepare_bm_inv3d(file: Path, resolution: Optional[int], t,b,l,r):
file = Path(file)
assert file.suffix in [".npz", ".mat", ".npy"]
bm = load_array(file).astype("float32")*1600.0 # (512, 512, 2) 0-1600
bm = tight_crop_map(bm,t,b,l,r) # (512, 512, 2) crop and 0-1
bm = scale_map(bm, resolution) # (288, 288, 2)
bm = np.roll(bm, shift=1, axis=-1)# εεε
xεy
bm = rearrange(bm, "h w c -> c h w")
bm = torch.from_numpy(bm).float()*resolution # 0-288
# bm=(bm-0.5)*2
return bm
def prepare_bm_docregis(file: Path, resolution: Optional[int], t,b,l,r, H,W):
file = Path(file)
assert file.suffix in [".npz", ".mat", ".npy"]
bm = load_array(file).astype("float32") # numpy (512, 512, 2) (0,1)
# bm = (bm+1)/2 # (0,1)
bm[...,0] *= H
bm[...,1] *= W
bm = tight_crop_map_docaligner(bm,t,b,l,r,H,W) # (512, 512, 2) crop and 0-1
bm = scale_map(bm, resolution) # (288, 288, 2)
bm = np.roll(bm, shift=1, axis=-1)# εεε
xεy
bm = rearrange(bm, "h w c -> c h w") # (2, 288, 288)
bm = torch.from_numpy(bm).float()*resolution # 0-288
# bm=(bm-0.5)*2
return bm
class Averager(object):
"""Compute average for torch.Tensor, used for loss average."""
def __init__(self):
self.reset()
def add(self, v):
count = v.data.numel()
v = v.data.sum()
self.n_count += count
self.sum += v
def reset(self):
self.n_count = 0
self.sum = 0
def val(self):
res = 0
if self.n_count != 0:
res = self.sum / float(self.n_count)
return res
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.n_count += n
self.avg = self.sum / self.n_count
# class AverageMeter(object):
# """Computes and stores the average and current value"""
# def __init__(self):
# self.reset()
# def reset(self):
# self.val = 0
# self.avg = 0
# self.sum = 0
# self.count = 0
# def update(self, val, n=1):
# self.val = val
# self.sum += val * n
# self.count += n
# self.avg = self.sum / self.count
def save_checkpoint(state, is_best, epoch, checkpoint_name, filename='checkpoint.pth.tar'):
if os.path.exists("checkpoints/{}".format(checkpoint_name)) is False:
os.makedirs("checkpoints/{}".format(checkpoint_name), exist_ok=True)
torch.save(state, 'checkpoints/{}/'.format(checkpoint_name) + filename + '_latest.pth.tar')
if epoch%10 == 0:
# os.rename('checkpoint/' + filename + '_latest.pth.tar', 'checkpoint/' + filename + '_%d.pth.tar' % (epoch))
shutil.copyfile('checkpoints/{}/'.format(checkpoint_name) + filename + '_latest.pth.tar', 'checkpoints/{}/'.format(checkpoint_name) + filename + '_%d.pth.tar' % (epoch))
if is_best:
shutil.copyfile('checkpoints/{}/'.format(checkpoint_name) + filename + '_latest.pth.tar', 'checkpoints/{}/'.format(checkpoint_name) + filename + '_best.pth.tar')
class EarlyStopping:
def __init__(self, patience=7, verbose=False, delta=0):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model, path, ret=None, opt=None):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, path,ret,opt)
elif score < self.best_score + self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, path,ret,opt)
self.counter = 0
def save_checkpoint(self, val_loss, model, path,ret,opt):
if self.verbose:
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), path + '/' + 'checkpoint.pth')
self.val_loss_min = val_loss
|