File size: 10,329 Bytes
05fb4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from PIL import Image
from pathlib import Path
from typing import *
from einops import rearrange

import numpy as np
import torch
import os
import shutil
import cv2

# from util.image import scale_image, random_tight_crop, tight_crop_image,random_tight_crop_imgonly
# from util.load import load_array, load_image,load_npz
# from util.mapping import scale_map, tight_crop_map, tight_crop_map_docaligner
# from inv3d_util.mask import scale_mask, tight_crop_mask
from torchvision.utils import save_image as tv_save_image
import torch.nn.functional as F


def training_init(args):
    local_rank = int(os.environ["LOCAL_RANK"])
    torch.distributed.init_process_group('nccl', init_method='env://')
    device = torch.device(f'cuda:{local_rank}')
    torch.cuda.manual_seed_all(40)
    # create model
    torch.cuda.set_device(local_rank)
    torch.cuda.empty_cache()
    return local_rank



IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
def has_file_allowed_extension(filename, extensions):
    return filename.lower().endswith(extensions)

def is_image_file(filename):
    return has_file_allowed_extension(filename, IMG_EXTENSIONS)

def pil_loader(path):
    with open(path, 'rb') as f:
        img = Image.open(f)
        return img.convert('RGB')

def pil_loader_withHW(path):
    with open(path, 'rb') as f:
        img = Image.open(f)
        width, height = img.size
        return img.convert('RGB'), height, width 

def cv2_loader_withHW(path):
    # with open(path, 'rb') as f:
    img = cv2.imread(path,flags=cv2.IMREAD_COLOR)
    img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    height, width, channels = img.shape
    return img, height, width 



def collate_batch(batch_list):
    data1 = [item[0] for item in batch_list]
    data2 = [item[1] for item in batch_list]
    labels = [item[2] for item in batch_list]
    return data1, data2, labels

    # data1 = [item[0] for item in batch_list]
    # labels = [item[1] for item in batch_list]
    # return data1, labels
    # # features = torch.stack([sample[0] for sample in batch])  
    # # labels = torch.stack([sample[1] for sample in batch])  
    # # return features,labels   

def select_max_region(mask):
    nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
    background = 0
    for row in range(stats.shape[0]):
        if stats[row, :][0] == 0 and stats[row, :][1] == 0:
            background = row
    stats_no_bg = np.delete(stats, background, axis=0)
    max_idx = stats_no_bg[:, 4].argmax()
    max_region = np.where(labels==max_idx+1, 1, 0)

    return max_region

def docreg_bm_norm(file: str, resolution: Optional[int]):
    file = Path(file)
    bm = np.load(file)[file.name[:-4]][0] # (4032, 3024, 2) numpy
    bm = ((bm+1)/2)*resolution # (0-288)
    bm = scale_map(bm, resolution) # (288, 288, 2) 
    bm = rearrange(bm, "h w c -> c h w") # (2, 288, 288) 
    bm = torch.from_numpy(bm).float() # *resolution # tensor 0-288
    return bm



def prepare_image(
    image_file: Path, mask_file: Path, color_jitter: bool, **scale_settings
):
    
    image = load_image(image_file) # (1770, 1327, 3)
    # mask = load_image(mask_file)[..., :1] # (1770, 1327, 1)
    mask = load_npz(mask_file)[..., :1].astype(np.uint8)
    mask = select_max_region(mask)
    H,W,_ = image.shape

    # test point
    # image = scale_image(image, **scale_settings) # (288, 288, 3)
    # image = rearrange(image, "h w c -> c h w")
    # image = image.astype("float32") / 255
    # image = torch.from_numpy(image)
    # flow = load_array(flow_file) # (1024, 1024, 2)
    # flow = rearrange(flow, "h w c -> c h w")
    # flow = torch.from_numpy(flow).float()
    # B2A = spatial_trans(image, flow[None], 0)
    # tv_save_image(image, "backup/test/ori.png")
    # tv_save_image(B2A[0], "backup/test/ttt.png")


    # assert image.shape[0]>0,print("input",image.shape) 
    # assert image.shape[1]>0,print("input",image.shape) 
    # image = tight_crop_image(image, mask.squeeze()) # (349, 245, 3)
    image,t,b,l,r = random_tight_crop_imgonly(mask,image,H,W)

    assert image.shape[0]>0, print("crop",image.shape) 
    assert image.shape[1]>0, print("crop",image.shape) 
    image = scale_image(image, **scale_settings) # (288, 288, 3)
    # image = transforms.ColorJitter(0.2, 0.2, 0.2, 0.2)(image) if color_jitter else image
    image = rearrange(image, "h w c -> c h w")
    image = image.astype("float32") / 255
    image = torch.from_numpy(image)
    # recon = scale_image(recon, **scale_settings) # (288, 288, 3)    
    
    # img_pil = Image.fromarray(image)
    # image = transfrom(img_pil)
    
    # t,b,l,r = None,None,None,None
    return image,t,b,l,r,H,W



def prepare_masked_image(
    image_file: Path, recon_file: Path, transfrom, uv_file: Path, color_jitter: bool, **scale_settings
):
    mask = load_array(uv_file)[..., :1] # [448,448,1]
    
    image = load_image(image_file) # (448, 448, 3)
    recon = load_image(recon_file) # (448, 448, 3)
    # assert image.shape[0]>0,print("input",image.shape) 
    # assert image.shape[1]>0,print("input",image.shape) 
    # image = tight_crop_image(image, mask.squeeze()) # (349, 245, 3)
    image,recon,t,b,l,r = random_tight_crop(mask,image,recon)
    assert image.shape[0]>0, print("crop",image.shape) 
    assert image.shape[1]>0, print("crop",image.shape) 
    # image = scale_image(image, **scale_settings) # (288, 288, 3)
    # recon = scale_image(recon, **scale_settings) # (288, 288, 3)    
    # image = transforms.ColorJitter(0.2, 0.2, 0.2, 0.2)(image) if color_jitter else image
    img_pil = Image.fromarray(image)
    recon_pil = Image.fromarray(recon)

    image = transfrom(img_pil)
    recon = transfrom(recon_pil)
    # image = rearrange(image, "h w c -> c h w")
    # image = image.astype("float32") / 255
    # image = torch.from_numpy(image)
    # recon = rearrange(recon, "h w c -> c h w")
    # recon = recon.astype("float32") / 255
    # recon = torch.from_numpy(recon)
    return image,recon,t,b,l,r


def prepare_bm_inv3d(file: Path, resolution: Optional[int], t,b,l,r):
    file = Path(file)
    assert file.suffix in [".npz", ".mat", ".npy"]

    bm = load_array(file).astype("float32")*1600.0 # (512, 512, 2) 0-1600

    bm = tight_crop_map(bm,t,b,l,r) #  (512, 512, 2) crop and 0-1
    bm = scale_map(bm, resolution) #   (288, 288, 2) 
    bm = np.roll(bm, shift=1, axis=-1)# ε˜ε›žε…ˆx后y
    bm = rearrange(bm, "h w c -> c h w")
    bm = torch.from_numpy(bm).float()*resolution # 0-288
    # bm=(bm-0.5)*2
    return bm

def prepare_bm_docregis(file: Path, resolution: Optional[int], t,b,l,r, H,W):
    file = Path(file)
    assert file.suffix in [".npz", ".mat", ".npy"]

    bm = load_array(file).astype("float32") # numpy (512, 512, 2) (0,1)
    # bm = (bm+1)/2 # (0,1)
    bm[...,0] *= H
    bm[...,1] *= W

    bm = tight_crop_map_docaligner(bm,t,b,l,r,H,W) #  (512, 512, 2) crop and 0-1
    bm = scale_map(bm, resolution) #   (288, 288, 2) 
    bm = np.roll(bm, shift=1, axis=-1)# ε˜ε›žε…ˆx后y
    bm = rearrange(bm, "h w c -> c h w") # (2, 288, 288)
    bm = torch.from_numpy(bm).float()*resolution # 0-288
    # bm=(bm-0.5)*2
    return bm






class Averager(object):
    """Compute average for torch.Tensor, used for loss average."""

    def __init__(self):
        self.reset()

    def add(self, v):
        count = v.data.numel()
        v = v.data.sum()
        self.n_count += count
        self.sum += v

    def reset(self):
        self.n_count = 0
        self.sum = 0

    def val(self):
        res = 0
        if self.n_count != 0:
            res = self.sum / float(self.n_count)
        return res

    def update(self, val, n=1):
            self.val = val
            self.sum += val * n
            self.n_count += n
            self.avg = self.sum / self.n_count



# class AverageMeter(object):
#     """Computes and stores the average and current value"""

#     def __init__(self):
#         self.reset()

#     def reset(self):
#         self.val = 0
#         self.avg = 0
#         self.sum = 0
#         self.count = 0

#     def update(self, val, n=1):
#         self.val = val
#         self.sum += val * n
#         self.count += n
#         self.avg = self.sum / self.count


def save_checkpoint(state, is_best, epoch, checkpoint_name, filename='checkpoint.pth.tar'):
    if os.path.exists("checkpoints/{}".format(checkpoint_name)) is False:
        os.makedirs("checkpoints/{}".format(checkpoint_name), exist_ok=True)
    torch.save(state, 'checkpoints/{}/'.format(checkpoint_name) + filename + '_latest.pth.tar')
    if epoch%10 == 0:
        # os.rename('checkpoint/' + filename + '_latest.pth.tar', 'checkpoint/' + filename + '_%d.pth.tar' % (epoch))
        shutil.copyfile('checkpoints/{}/'.format(checkpoint_name) + filename + '_latest.pth.tar', 'checkpoints/{}/'.format(checkpoint_name) + filename + '_%d.pth.tar' % (epoch))
    if is_best:
        shutil.copyfile('checkpoints/{}/'.format(checkpoint_name) + filename + '_latest.pth.tar', 'checkpoints/{}/'.format(checkpoint_name) + filename + '_best.pth.tar')


class EarlyStopping:
    def __init__(self, patience=7, verbose=False, delta=0):
        self.patience = patience
        self.verbose = verbose
        self.counter = 0
        self.best_score = None
        self.early_stop = False
        self.val_loss_min = np.Inf
        self.delta = delta

    def __call__(self, val_loss, model, path, ret=None, opt=None):
        score = -val_loss
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(val_loss, model, path,ret,opt)
        elif score < self.best_score + self.delta:
            self.counter += 1
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(val_loss, model, path,ret,opt)
            self.counter = 0

    def save_checkpoint(self, val_loss, model, path,ret,opt):
        if self.verbose:
            print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}).  Saving model ...')
        torch.save(model.state_dict(), path + '/' + 'checkpoint.pth')
        self.val_loss_min = val_loss