Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,337 Bytes
05fb4ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import numpy as np
import torch as th
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from train_settings.dvd.feature_backbones.VGG_features import VGGPyramid
from utils_flow.visualization_utils import visualize, visualize_dewarping
from .eval_utils import extract_raw_features_single, extract_raw_features_single2
from .improved_diffusion import dist_util
from .improved_diffusion.gaussian_diffusion import GaussianDiffusion
import torch
from torchvision.utils import save_image as tv_save_image
def prepare_data(settings, batch_preprocessing, SIZE, data):
if 'source_image_ori' in data:
source_vis = data['source_image_ori'] # B, C, 512, 512 torch.uint8 cpu
else:
source_vis = data['source_image']
if 'target_image' in data:
target_vis = data['target_image']
else:
target_vis = None
_, _, H_ori, W_ori = source_vis.shape
# data = batch_preprocessing(data)
source = data['source_image'].to(dist_util.dev()) # [1, 3, 914, 1380] torch.float32
if 'source_image_0' in data:
source_0 = data['source_image_0'].to(dist_util.dev())
else:
source_0 = None
if 'target_image' in data:
target = data['target_image'] # [1, 3, 914, 1380] torch.float32
else:
target = None
if 'flow_map' in data:
batch_ori = data['flow_map'] # [1, 2, 914, 1380] torch.float32
else:
batch_ori = None
if 'flow_map_inter' in data:
batch_ori_inter = data['flow_map_inter'] # [1, 2, 914, 1380] torch.float32
else:
batch_ori_inter = None
if target is not None:
target = F.interpolate(target, size=512, mode='bilinear', align_corners=False) # [1, 3, 512, 512]
target_256 = data['target_image_256'].to(dist_util.dev()) # [1, 3, 256, 256]
else:
target = None
target_256 = None
# source = F.interpolate(source, size=512, mode='bilinear', align_corners=False) #[1, 3, 512, 512]
# source_256 = data['source_image_256'].to(dist_util.dev()) # [1, 3, 256, 256]
if settings.env.eval_dataset == 'hp-240':# false
source_256 = source
target_256 = target
else: # true
data['source_image_256'] = torch.nn.functional.interpolate(input=source.float(), size=(256, 256), mode='area')
source_256 = data['source_image_256'].to(dist_util.dev())
if 'target_image_256' in data:
target_256 = data['target_image_256']
else:
target_256 = None
if 'correspondence_mask' in data:
mask = data['correspondence_mask'] # torch.bool [1, 914, 1380]
else:
mask = torch.ones((1, 512, 512), dtype=torch.bool).to(dist_util.dev()) # None
return data, H_ori, W_ori, source, target, batch_ori, batch_ori_inter, source_256, target_256, source_vis, target_vis, mask, source_0
def run_sample_lr_dewarping(
settings, logger, diffusion, model, radius, source, feature_size,
raw_corr, init_flow, c20, source_64, pyramid, doc_mask,
seg_map_all=None, textline_map=None, init_feat=None
):
# init_flow = init_flow * feature_size
# coords = initialize_flow(init_flow.shape[0], feature_size, feature_size, dist_util.dev())
# coords_warped = coords + init_flow
# local_corr = local_Corr(
# raw_corr.view(1, 1, feature_size, feature_size, feature_size, feature_size).to(dist_util.dev()),
# coords_warped.to(dist_util.dev()),
# radius,
# )
# local_corr = F.interpolate(
# local_corr.view(1, (2 * radius + 1) ** 2, feature_size, feature_size),
# size=feature_size,
# mode='bilinear',
# align_corners=True,
# )
# init_flow = F.interpolate(init_flow, size=feature_size, mode='bilinear', align_corners=True)
# init_flow /= feature_size
model_kwsettings = {'init_flow': init_flow, 'src_feat': c20, 'src_64':None,
'y512':source, 'tmode':settings.env.train_mode,
'mask_cat': doc_mask,
'init_feat': init_feat,
'iter': settings.env.iter} # 'trg_feat': trg_feat
# [1, 81, 64, 64] [1, 2, 64, 64] [1, 64, 64, 64]
if settings.env.use_gt_mask == False:
model_kwsettings['mask_y512'] = seg_map_all # [b, 384, 64, 64]
if settings.env.use_line_mask == True:
model_kwsettings['line_msk'] = textline_map #
image_size_h, image_size_w = feature_size, feature_size
# tv_save_image(source,"vis_hp/debug_vis/source.png")
# tv_save_image(doc_mask,"vis_hp/debug_vis/mask512_8877.png")
logger.info(f"\nStarting sampling")
sample, _ = diffusion.ddim_sample_loop(
model,
(1, 2, image_size_h, image_size_w), # 1,2,64,64
noise=None,
clip_denoised=settings.env.clip_denoised, # false
model_kwargs=model_kwsettings,
eta=0.0,
progress=True,
denoised_fn=None,
sampling_kwargs={'src_img': source}, # 'trg_img': target
logger=logger,
n_batch=settings.env.n_batch,
time_variant = settings.env.time_variant,
pyramid=pyramid
)
sample = th.clamp(sample, min=-1, max=1)
return sample
def run_evaluation_docunet(
settings, logger, val_loader, diffusion: GaussianDiffusion, model,
pretrained_dewarp_model,pretrained_line_seg_model=None,pretrained_seg_model=None
):
os.makedirs(f'vis_hp/{settings.env.eval_dataset_name}/{settings.name}', exist_ok=True)
# batch_preprocessing = DocBatchPreprocessing(
# settings, apply_mask=False, apply_mask_zero_borders=False, sparse_ground_truth=False
# )
batch_preprocessing = None
pbar = tqdm(enumerate(val_loader), total=len(val_loader))
pyramid = VGGPyramid(train=False).to(dist_util.dev())
SIZE = None
trian_t = []
for i, data in pbar:
radius = 4
raw_corr = None
image_size = 64
data_path = data['path']
# ref test
# source_288 = F.interpolate(data['source_image']/255., size=(288), mode='bilinear', align_corners=True).to(dist_util.dev())
source_288 = F.interpolate(data['source_image'], size=(288), mode='bilinear', align_corners=True).to(dist_util.dev())
# tv_save_image(data['source_image']/255., "vis_hp/msk5/in{}".format(data['path'][0].split('/')[-1]))
if settings.env.time_variant == True:
init_feat = torch.zeros((data['source_image'].shape[0], 256, image_size, image_size), dtype=torch.float32).to(dist_util.dev())
else:
init_feat = None
with torch.inference_mode():
ref_bm, mask_x = pretrained_dewarp_model(source_288) # [1,2,288,288] 0~288 0~1
# base = coords_grid_tensor((288,288)).to(ref_bm.device) # [1, 2, 288, 288]
# ref_flow = ref_bm - base
ref_flow = ref_bm/287.0 # [-1, 1] # [1,2,288,288]
if settings.env.use_init_flow:
init_flow = F.interpolate(ref_flow, size=(image_size), mode='bilinear', align_corners=True) # [24, 2, 64, 64]
else:
init_flow = torch.zeros((data['source_image'].shape[0], 2, image_size, image_size), dtype=torch.float32).to(dist_util.dev())
# mask_x = F.interpolate(mask_x, size=(512), mode='bilinear', align_corners=True) # 0-1
# data['source_image'] = mask_x*data['source_image'].to(dist_util.dev()) # 0-255
# mask_x_vis = mask_x*data['source_image'].to(dist_util.dev()) # 不存在最优mask阈值策略
# tv_save_image(mask_x_vis, "vis_hp/msk_wore/{}".format(data['path'][0].split('/')[-1])) # 0~1 (288,288)
(
data,
H_ori, # 512
W_ori, # 512
source, # [1, 3, 512, 512] 0-1
target, # None
batch_ori, # None
batch_ori_inter, # None
source_256,# [1, 3, 256, 256] 0-1
target_256, # None
source_vis, # [1, 3, H, W] cpu仅用于可视化
target_vis, # None
mask, # [1, 512, 512] 全白
source_0
) = prepare_data(settings, batch_preprocessing, SIZE, data)
with torch.no_grad():
if settings.env.use_gt_mask == False:
# ref_bm, mask_x = self.pretrained_dewarp_model(source_288) # [1,2,288,288] bm 0~288 mskx0-256
mskx, d0, hx6, hx5d, hx4d, hx3d, hx2d, hx1d = pretrained_seg_model(source_288)
hx6 = F.interpolate(hx6, size=image_size, mode='bilinear', align_corners=False)
hx5d = F.interpolate(hx5d, size=image_size, mode='bilinear', align_corners=False)
hx4d = F.interpolate(hx4d, size=image_size, mode='bilinear', align_corners=False)
hx3d = F.interpolate(hx3d, size=image_size, mode='bilinear', align_corners=False)
hx2d = F.interpolate(hx2d, size=image_size, mode='bilinear', align_corners=False)
hx1d = F.interpolate(hx1d, size=image_size, mode='bilinear', align_corners=False)
seg_map_all = torch.cat((hx6, hx5d, hx4d, hx3d, hx2d, hx1d), dim=1) # [b, 384, 64, 64]
# tv_save_image(mskx,"vis_hp/debug_vis/mskx.png")
if settings.env.use_line_mask:
textline_map, textline_mask = pretrained_line_seg_model(mskx) # [3, 64, 256, 256]
textline_map = F.interpolate(textline_map, size=image_size, mode='bilinear', align_corners=False) # [3, 64, 64, 64]
else:
seg_map_all = None
textline_map = None
if settings.env.train_VGG:
c20 = None
feature_size = image_size
else:
feature_size = image_size
if settings.env.train_mode == 'stage_1_dit_cat' or settings.env.train_mode =='stage_1_dit_cross':
with th.no_grad():
c20 = extract_raw_features_single2(pyramid, source, source_256, feature_size) # [24, 1, 64, 64, 64, 64]
# 平均互相关,VGG最浅层特征的下采样(512*512->64*64)
else:
with th.no_grad():
c20 = extract_raw_features_single(pyramid, source, source_256, feature_size) # [24, 1, 64, 64, 64, 64]
# 平均互相关,VGG最浅层特征的下采样(512*512->64*64)
source_64 = None # F.interpolate(source, size=(feature_size), mode='bilinear', align_corners=True)
logger.info(f"Starting sampling with VGG Features")
# init_flow = correlation_to_flow_w_argmax(
# raw_corr.view(1, 1, feature_size, feature_size, feature_size, feature_size),
# output_shape=(feature_size, feature_size),
# ) # B, 2, 64, 64 初始偏移场
import time
begin_train = time.time()
sample = run_sample_lr_dewarping(
settings,
logger,
diffusion,
model,
radius, # 4
source, # [B, 3, 512, 512] 0~1
feature_size, # 64
raw_corr, # None
init_flow, # [B, 2, 64, 64] -1~1
c20, # # [B, 64, 64, 64]
source_64, # None
pyramid,
mask_x, #mask_x, # F.interpolate(mskx, size=(512), mode='bilinear', align_corners=True)[:,:1,:,:] , # mask_x
seg_map_all,
textline_map,
init_feat
) # sample: [1, 2, 64, 64] 偏移量 [-1,1]范围 五步DDIM的结果
trian_t.append(time.time()-begin_train) # 从这里宣布结束训练当前epoch
# if settings.env.use_sr_net == True: # false
# logger.info('Running super resolution')
# sample_sr = None
# for j in range(1):
# batch_ori, sample_sr, init_flow_sr = run_sample_sr(
# settings, logger, diffusion_sr, model_sr, pyramid, data, sample, sample_sr
# )
# sample_ = F.interpolate(sample_sr, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
# sample_[:, 0, :, :] = sample_[:, 0, :, :] * W_ori
# sample_[:, 1, :, :] = sample_[:, 1, :, :] * H_ori
# sample_ = sample_.permute(0, 2, 3, 1)[mask]
# batch_ori_ = batch_ori.permute(0, 2, 3, 1)[mask]
# epe = th.sum((sample_ - batch_ori_.to(sample_.device)) ** 2, dim=1).sqrt()
# logger.info(f'sr iter: {i}, epe: {epe.mean()}')
# sample = F.interpolate(sample_sr, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
# sample[:, 0, :, :] = sample[:, 0, :, :] * W_ori
# sample[:, 1, :, :] = sample[:, 1, :, :] * H_ori
# init_flow = F.interpolate(init_flow_sr, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
# # init_flow[:, 0, :, :] = init_flow[:, 0, :, :] * W_ori
# # init_flow[:, 1, :, :] = init_flow[:, 1, :, :] * H_ori
# sample = th.mean(sample[0], dim=0, keepdim=True)
if settings.env.use_sr_net == False:
sample = F.interpolate(sample, size=(H_ori, W_ori), mode='bilinear', align_corners=True) # [-1,+1] 偏移场
# sample[:, 0, :, :] = sample[:, 0, :, :] * W_ori
# sample[:, 1, :, :] = sample[:, 1, :, :] * H_ori
base = F.interpolate(coords_grid_tensor((512,512))/511., size=(H_ori, W_ori), mode='bilinear', align_corners=True)
# sample = ( ((sample + base.to(sample.device)) )*2 - 1 )
sample = ( ((sample + base.to(sample.device))*1 )*2 - 1 )*0.987 # (2 * (bm / 286.8) - 1) * 0.99
ref_flow = None
if ref_flow is not None:
ref_flow = F.interpolate(ref_flow, size=(H_ori, W_ori), mode='bilinear', align_corners=True) # [-1,+1] 偏移场
# ref_flow[:, 0, :, :] = ref_flow[:, 0, :, :] * W_ori
# ref_flow[:, 1, :, :] = ref_flow[:, 1, :, :] * H_ori
ref_flow = (ref_flow + base.to(ref_flow.device))*2 -1
# init_flow = F.interpolate(init_flow, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
else:
raise ValueError("Invalid value")
if settings.env.visualize:
visualize_dewarping(settings, sample, data, i, source_vis, data_path, ref_flow)
# sample = sample.permute(0, 2, 3, 1)[mask]
# init_flow[:, 0, :, :] = init_flow[:, 0, :, :] * W_ori
# init_flow[:, 1, :, :] = init_flow[:, 1, :, :] * H_ori
# init_flow = init_flow.permute(0, 2, 3, 1)[mask]
# print("Elapsed time:{:.2f} minutes ".format(trian_t/60))
print(len(trian_t))
print("Elapsed time:{:.2f} avg_second ".format(sum(trian_t) / len(trian_t)))
def coords_grid_tensor(perturbed_img_shape):
im_x, im_y = np.mgrid[0:perturbed_img_shape[0]-1:complex(perturbed_img_shape[0]),
0:perturbed_img_shape[1]-1:complex(perturbed_img_shape[1])]
coords = np.stack((im_y,im_x), axis=2) # 先x后y,行序优先
coords = th.from_numpy(coords).float().permute(2,0,1).to(dist_util.dev()) # (2, 512, 512)
return coords.unsqueeze(0) # [2, 512, 512]
def validate(local_rank, args, val_loader, model, criterion):
for i, sample in enumerate(val_loader):
input1, label = sample # [2, 3, 288, 288],[2, 2, 288, 288]
input1 = input1.to(local_rank,non_blocking=True)
label = label.to(local_rank,non_blocking=True)
# label = (label/288.0-0.5)*2
with torch.no_grad():
output = model(input1) # [3b, 2, 288, 288]
# loss = F.l1_loss(output, label) # 合成图像强监督
# test point
# bm_test=(output/288.0-0.5)*2
bm_test = (output/992.0-0.5)*2
label = (label/992.0-0.5)*2
# bm_test = output
bm_test = F.interpolate(bm_test, size=(1000,1000), mode='bilinear', align_corners=True)
label = F.interpolate(label, size=(1000,1000), mode='bilinear', align_corners=True)
input1 = F.interpolate(input1, size=(1000,1000), mode='bilinear', align_corners=True)
regis_image1 = F.grid_sample(input=input1, grid=bm_test.permute(0,2,3,1), align_corners=True)
regis_image2 = F.grid_sample(input=input1, grid=label.permute(0,2,3,1), align_corners=True)
# regis_image2 = F.grid_sample(input=a_sample[None], grid=bm_test[None].permute(0,2,3,1), align_corners=True)
tv_save_image(input1[0], "backup/test/ori.png")
tv_save_image(regis_image1[0], "backup/test/aaa.png")
tv_save_image(regis_image2[0], "backup/test/gt.png")
# warped_src = warp(source_vis.to(sample.device).float(), sample) # [1, 3, 1629, 981]
# warped_src = warped_src[0].permute(1, 2, 0).detach().cpu().numpy() # (1873, 1353, 3)
# warped_src = Image.fromarray((warped_src).astype(np.uint8))
# warped_src.save(f"vis_hp/{settings.env.eval_dataset_name}/{settings.name}/dewarped_pred/warped_{data_path[0].split('/')[-1]}")
return None |