File size: 17,337 Bytes
05fb4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os

import numpy as np
import torch as th
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm


from train_settings.dvd.feature_backbones.VGG_features import VGGPyramid

from utils_flow.visualization_utils import visualize, visualize_dewarping

from .eval_utils import extract_raw_features_single, extract_raw_features_single2
from .improved_diffusion import dist_util
from .improved_diffusion.gaussian_diffusion import GaussianDiffusion
import torch
from torchvision.utils import save_image as tv_save_image

def prepare_data(settings, batch_preprocessing, SIZE, data):
    if 'source_image_ori' in data:
        source_vis = data['source_image_ori']  # B, C, 512, 512 torch.uint8 cpu
    else:
        source_vis = data['source_image']
    if 'target_image' in data:
        target_vis = data['target_image']
    else:
        target_vis = None
    _, _, H_ori, W_ori = source_vis.shape

    # data = batch_preprocessing(data)

    source = data['source_image'].to(dist_util.dev())  # [1, 3, 914, 1380]  torch.float32
    if 'source_image_0' in data:
        source_0 = data['source_image_0'].to(dist_util.dev())
    else:
        source_0 = None
    if 'target_image' in data:  
        target = data['target_image']  # [1, 3, 914, 1380]  torch.float32
    else:
        target = None 
    if 'flow_map' in data:    
        batch_ori = data['flow_map']   # [1, 2, 914, 1380]  torch.float32
    else:
        batch_ori = None    
    if 'flow_map_inter' in data:    
        batch_ori_inter = data['flow_map_inter']   # [1, 2, 914, 1380]  torch.float32
    else:
        batch_ori_inter = None    
    if target is not None:
        target = F.interpolate(target, size=512, mode='bilinear', align_corners=False) # [1, 3, 512, 512] 
        target_256 = data['target_image_256'].to(dist_util.dev()) # [1, 3, 256, 256]
    else:
        target = None
        target_256 = None
    # source = F.interpolate(source, size=512, mode='bilinear', align_corners=False) #[1, 3, 512, 512] 
    # source_256 = data['source_image_256'].to(dist_util.dev()) # [1, 3, 256, 256]
    
    if settings.env.eval_dataset == 'hp-240':# false
        source_256 = source
        target_256 = target

    else: # true
        data['source_image_256'] = torch.nn.functional.interpolate(input=source.float(), size=(256, 256), mode='area')
        source_256 = data['source_image_256'].to(dist_util.dev())
        
        if 'target_image_256' in data:
            target_256 = data['target_image_256']
        else:
            target_256 = None
    if 'correspondence_mask' in data:
        mask = data['correspondence_mask'] # torch.bool [1, 914, 1380]
    else:
        mask = torch.ones((1, 512, 512), dtype=torch.bool).to(dist_util.dev()) # None

    return data, H_ori, W_ori, source, target, batch_ori, batch_ori_inter, source_256, target_256, source_vis, target_vis, mask, source_0



def run_sample_lr_dewarping(
    settings, logger, diffusion, model, radius, source, feature_size, 
    raw_corr, init_flow, c20, source_64, pyramid, doc_mask, 
    seg_map_all=None, textline_map=None, init_feat=None
):
    # init_flow = init_flow * feature_size
    # coords = initialize_flow(init_flow.shape[0], feature_size, feature_size, dist_util.dev())
    # coords_warped = coords + init_flow

    # local_corr = local_Corr(
    #     raw_corr.view(1, 1, feature_size, feature_size, feature_size, feature_size).to(dist_util.dev()),
    #     coords_warped.to(dist_util.dev()),
    #     radius,
    # )

    # local_corr = F.interpolate(
    #     local_corr.view(1, (2 * radius + 1) ** 2, feature_size, feature_size),
    #     size=feature_size,
    #     mode='bilinear',
    #     align_corners=True,
    # )

    # init_flow = F.interpolate(init_flow, size=feature_size, mode='bilinear', align_corners=True)
    # init_flow /= feature_size

    
    model_kwsettings = {'init_flow': init_flow, 'src_feat': c20, 'src_64':None, 
                        'y512':source, 'tmode':settings.env.train_mode,
                        'mask_cat': doc_mask,
                        'init_feat': init_feat,
                        'iter': settings.env.iter} # 'trg_feat': trg_feat
    # [1, 81, 64, 64] [1, 2, 64, 64] [1, 64, 64, 64]
    if settings.env.use_gt_mask == False:
        model_kwsettings['mask_y512'] = seg_map_all # [b, 384, 64, 64]
    if settings.env.use_line_mask == True:
        model_kwsettings['line_msk'] = textline_map # 
    image_size_h, image_size_w = feature_size, feature_size
    # tv_save_image(source,"vis_hp/debug_vis/source.png")
    # tv_save_image(doc_mask,"vis_hp/debug_vis/mask512_8877.png")
    logger.info(f"\nStarting sampling")

    sample, _ = diffusion.ddim_sample_loop(
        model,
        (1, 2, image_size_h, image_size_w), # 1,2,64,64
        noise=None,
        clip_denoised=settings.env.clip_denoised, # false
        model_kwargs=model_kwsettings,
        eta=0.0,
        progress=True,
        denoised_fn=None,
        sampling_kwargs={'src_img': source}, # 'trg_img': target
        logger=logger,
        n_batch=settings.env.n_batch,
        time_variant = settings.env.time_variant,
        pyramid=pyramid
    )

    sample = th.clamp(sample, min=-1, max=1)
    return sample



def run_evaluation_docunet(
    settings, logger, val_loader, diffusion: GaussianDiffusion, model, 
    pretrained_dewarp_model,pretrained_line_seg_model=None,pretrained_seg_model=None
):
    os.makedirs(f'vis_hp/{settings.env.eval_dataset_name}/{settings.name}', exist_ok=True)
    # batch_preprocessing = DocBatchPreprocessing(
    #             settings, apply_mask=False, apply_mask_zero_borders=False, sparse_ground_truth=False
    #         )
    batch_preprocessing = None
    pbar = tqdm(enumerate(val_loader), total=len(val_loader))
    pyramid = VGGPyramid(train=False).to(dist_util.dev())
    SIZE = None
    trian_t = []
    for i, data in pbar:
        radius = 4
        raw_corr = None
        image_size = 64 
        data_path = data['path']
        # ref test
        # source_288 = F.interpolate(data['source_image']/255., size=(288), mode='bilinear', align_corners=True).to(dist_util.dev())
        source_288 = F.interpolate(data['source_image'], size=(288), mode='bilinear', align_corners=True).to(dist_util.dev())
        # tv_save_image(data['source_image']/255., "vis_hp/msk5/in{}".format(data['path'][0].split('/')[-1]))
        
        
        if settings.env.time_variant == True:
            init_feat = torch.zeros((data['source_image'].shape[0], 256, image_size, image_size), dtype=torch.float32).to(dist_util.dev()) 
        else:
            init_feat = None
        
        
        with torch.inference_mode():
            ref_bm, mask_x = pretrained_dewarp_model(source_288) # [1,2,288,288] 0~288  0~1
            # base = coords_grid_tensor((288,288)).to(ref_bm.device) # [1, 2, 288, 288]
            # ref_flow = ref_bm - base 
            ref_flow = ref_bm/287.0 # [-1, 1]  # [1,2,288,288]
        if settings.env.use_init_flow: 
            init_flow = F.interpolate(ref_flow, size=(image_size), mode='bilinear', align_corners=True) # [24, 2, 64, 64]                  
        else:
            init_flow = torch.zeros((data['source_image'].shape[0], 2, image_size, image_size), dtype=torch.float32).to(dist_util.dev()) 
        # mask_x = F.interpolate(mask_x, size=(512), mode='bilinear', align_corners=True) # 0-1
        # data['source_image'] = mask_x*data['source_image'].to(dist_util.dev()) # 0-255
        # mask_x_vis = mask_x*data['source_image'].to(dist_util.dev()) # 不存在最优mask阈值策略
        # tv_save_image(mask_x_vis, "vis_hp/msk_wore/{}".format(data['path'][0].split('/')[-1])) # 0~1 (288,288)
        (
            data,
            H_ori, # 512
            W_ori, # 512
            source, # [1, 3, 512, 512] 0-1
            target, # None
            batch_ori, # None
            batch_ori_inter, # None
            source_256,# [1, 3, 256, 256] 0-1
            target_256, # None
            source_vis, # [1, 3, H, W] cpu仅用于可视化
            target_vis, # None
            mask, # [1, 512, 512] 全白
            source_0
        ) = prepare_data(settings, batch_preprocessing, SIZE, data)
        
        with torch.no_grad():
            if settings.env.use_gt_mask == False:
                # ref_bm, mask_x = self.pretrained_dewarp_model(source_288) # [1,2,288,288] bm 0~288 mskx0-256
                mskx, d0, hx6, hx5d, hx4d, hx3d, hx2d, hx1d = pretrained_seg_model(source_288)
                hx6 = F.interpolate(hx6, size=image_size, mode='bilinear', align_corners=False)
                hx5d = F.interpolate(hx5d, size=image_size, mode='bilinear', align_corners=False)
                hx4d = F.interpolate(hx4d, size=image_size, mode='bilinear', align_corners=False)
                hx3d = F.interpolate(hx3d, size=image_size, mode='bilinear', align_corners=False)
                hx2d = F.interpolate(hx2d, size=image_size, mode='bilinear', align_corners=False)
                hx1d = F.interpolate(hx1d, size=image_size, mode='bilinear', align_corners=False)

                seg_map_all = torch.cat((hx6, hx5d, hx4d, hx3d, hx2d, hx1d), dim=1) # [b, 384, 64, 64]
                # tv_save_image(mskx,"vis_hp/debug_vis/mskx.png")
                if settings.env.use_line_mask:
                    textline_map, textline_mask = pretrained_line_seg_model(mskx) # [3, 64, 256, 256]
                    textline_map = F.interpolate(textline_map, size=image_size, mode='bilinear', align_corners=False) #  [3, 64, 64, 64]
            else:
                seg_map_all = None
                textline_map = None
        
        
         
        
        if settings.env.train_VGG:
            c20 = None
            feature_size = image_size
        else:
            feature_size = image_size
            if settings.env.train_mode == 'stage_1_dit_cat' or settings.env.train_mode =='stage_1_dit_cross':
                with th.no_grad():
                    c20  = extract_raw_features_single2(pyramid, source, source_256, feature_size) # [24, 1, 64, 64, 64, 64]
                # 平均互相关,VGG最浅层特征的下采样(512*512->64*64)
            else:
                with th.no_grad():
                    c20  = extract_raw_features_single(pyramid, source, source_256, feature_size) # [24, 1, 64, 64, 64, 64]
                # 平均互相关,VGG最浅层特征的下采样(512*512->64*64)
        
        source_64 = None # F.interpolate(source, size=(feature_size), mode='bilinear', align_corners=True)
        logger.info(f"Starting sampling with VGG Features")
        # init_flow = correlation_to_flow_w_argmax(
        #         raw_corr.view(1, 1, feature_size, feature_size, feature_size, feature_size),
        #         output_shape=(feature_size, feature_size),
        #     )  # B, 2, 64, 64 初始偏移场
        
        import time
        begin_train = time.time()
        sample = run_sample_lr_dewarping(
            settings,
            logger,
            diffusion,
            model,
            radius, # 4
            source, # [B, 3, 512, 512] 0~1
            feature_size, # 64
            raw_corr, # None
            init_flow, # [B, 2, 64, 64]   -1~1
            c20, # # [B, 64, 64, 64]   
            source_64, # None
            pyramid,
            mask_x, #mask_x,  # F.interpolate(mskx, size=(512), mode='bilinear', align_corners=True)[:,:1,:,:] , # mask_x 
            seg_map_all,
            textline_map,
            init_feat
        ) # sample: [1, 2, 64, 64] 偏移量 [-1,1]范围 五步DDIM的结果
        
        
        
        trian_t.append(time.time()-begin_train)  # 从这里宣布结束训练当前epoch

        
        
        
        

        
        # if settings.env.use_sr_net == True: # false
        #     logger.info('Running super resolution')
        #     sample_sr = None
        #     for j in range(1):
        #         batch_ori, sample_sr, init_flow_sr = run_sample_sr(
        #             settings, logger, diffusion_sr, model_sr, pyramid, data, sample, sample_sr
        #         )

        #         sample_ = F.interpolate(sample_sr, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
        #         sample_[:, 0, :, :] = sample_[:, 0, :, :] * W_ori
        #         sample_[:, 1, :, :] = sample_[:, 1, :, :] * H_ori

        #         sample_ = sample_.permute(0, 2, 3, 1)[mask]
        #         batch_ori_ = batch_ori.permute(0, 2, 3, 1)[mask]
        #         epe = th.sum((sample_ - batch_ori_.to(sample_.device)) ** 2, dim=1).sqrt()
        #         logger.info(f'sr iter: {i}, epe: {epe.mean()}')

        #     sample = F.interpolate(sample_sr, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
        #     sample[:, 0, :, :] = sample[:, 0, :, :] * W_ori
        #     sample[:, 1, :, :] = sample[:, 1, :, :] * H_ori
        #     init_flow = F.interpolate(init_flow_sr, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
        #     # init_flow[:, 0, :, :] = init_flow[:, 0, :, :] * W_ori
        #     # init_flow[:, 1, :, :] = init_flow[:, 1, :, :] * H_ori
        # sample = th.mean(sample[0], dim=0, keepdim=True)
        if settings.env.use_sr_net == False:
            sample = F.interpolate(sample, size=(H_ori, W_ori), mode='bilinear', align_corners=True) # [-1,+1] 偏移场
            # sample[:, 0, :, :] = sample[:, 0, :, :] * W_ori
            # sample[:, 1, :, :] = sample[:, 1, :, :] * H_ori 
            base = F.interpolate(coords_grid_tensor((512,512))/511., size=(H_ori, W_ori), mode='bilinear', align_corners=True)
            # sample = ( ((sample + base.to(sample.device)) )*2 - 1 )
            sample = ( ((sample + base.to(sample.device))*1 )*2 - 1 )*0.987 #  (2 * (bm / 286.8) - 1) * 0.99
            ref_flow = None
            if ref_flow is not None: 
                ref_flow = F.interpolate(ref_flow, size=(H_ori, W_ori), mode='bilinear', align_corners=True) # [-1,+1] 偏移场
                # ref_flow[:, 0, :, :] = ref_flow[:, 0, :, :] * W_ori 
                # ref_flow[:, 1, :, :] = ref_flow[:, 1, :, :] * H_ori 
                ref_flow  = (ref_flow + base.to(ref_flow.device))*2 -1
            # init_flow = F.interpolate(init_flow, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
        else:
            raise ValueError("Invalid value")
        
        if settings.env.visualize:
            visualize_dewarping(settings, sample, data, i, source_vis, data_path, ref_flow)

        
        # sample = sample.permute(0, 2, 3, 1)[mask]
        # init_flow[:, 0, :, :] = init_flow[:, 0, :, :] * W_ori
        # init_flow[:, 1, :, :] = init_flow[:, 1, :, :] * H_ori
        # init_flow = init_flow.permute(0, 2, 3, 1)[mask]
    # print("Elapsed time:{:.2f} minutes ".format(trian_t/60))
    print(len(trian_t))
    print("Elapsed time:{:.2f} avg_second ".format(sum(trian_t) / len(trian_t)))


def coords_grid_tensor(perturbed_img_shape):
    im_x, im_y = np.mgrid[0:perturbed_img_shape[0]-1:complex(perturbed_img_shape[0]),
                            0:perturbed_img_shape[1]-1:complex(perturbed_img_shape[1])]
    coords = np.stack((im_y,im_x), axis=2) # 先x后y,行序优先
    coords = th.from_numpy(coords).float().permute(2,0,1).to(dist_util.dev())  # (2, 512, 512)
    return coords.unsqueeze(0) # [2, 512, 512]


def validate(local_rank, args, val_loader, model, criterion):
    for i, sample in enumerate(val_loader):
        input1, label = sample # [2, 3, 288, 288],[2, 2, 288, 288]
        input1 = input1.to(local_rank,non_blocking=True)
        label = label.to(local_rank,non_blocking=True)
        # label = (label/288.0-0.5)*2
        
        with torch.no_grad():
            output = model(input1) # [3b, 2, 288, 288]
            # loss = F.l1_loss(output, label) #  合成图像强监督
            # test point
            # bm_test=(output/288.0-0.5)*2
            bm_test = (output/992.0-0.5)*2
            label = (label/992.0-0.5)*2
            # bm_test = output
            bm_test = F.interpolate(bm_test, size=(1000,1000), mode='bilinear', align_corners=True)
            label = F.interpolate(label, size=(1000,1000), mode='bilinear', align_corners=True)
            input1 =  F.interpolate(input1, size=(1000,1000), mode='bilinear', align_corners=True)
            regis_image1 = F.grid_sample(input=input1, grid=bm_test.permute(0,2,3,1), align_corners=True)
            regis_image2 = F.grid_sample(input=input1, grid=label.permute(0,2,3,1), align_corners=True)
            
            # regis_image2 = F.grid_sample(input=a_sample[None], grid=bm_test[None].permute(0,2,3,1), align_corners=True)
            tv_save_image(input1[0], "backup/test/ori.png")
            tv_save_image(regis_image1[0], "backup/test/aaa.png")
            tv_save_image(regis_image2[0], "backup/test/gt.png")
            
            # warped_src = warp(source_vis.to(sample.device).float(), sample) # [1, 3, 1629, 981]
            # warped_src = warped_src[0].permute(1, 2, 0).detach().cpu().numpy() # (1873, 1353, 3)
            # warped_src = Image.fromarray((warped_src).astype(np.uint8))
            # warped_src.save(f"vis_hp/{settings.env.eval_dataset_name}/{settings.name}/dewarped_pred/warped_{data_path[0].split('/')[-1]}")



    return None