Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,301 Bytes
05fb4ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import torch
import torchvision.transforms as transforms
from termcolor import colored
from datasets.load_pre_made_dataset import \
Doc_Dataset, Aug_Doc_Dataset, Doc3d_Dataset, Mix_Dataset
from datasets.batch_processing import GLUNetBatchPreprocessing
from utils_data.image_transforms import ArrayToTensor
from utils_data.loaders import Loader
from train_settings.models.geotr.geotr_core import GeoTr, GeoTr_Seg, GeoTr_Seg_womask, GeoTr_Seg_Inf,\
reload_segmodel, reload_model, Seg
from ..models.geotr.unet_model import UNet
from .improved_diffusion import dist_util, logger
from .improved_diffusion.resample import create_named_schedule_sampler
from .improved_diffusion.script_util import (args_to_dict,
create_model_and_diffusion,
model_and_diffusion_defaults)
from .improved_diffusion.train_util import TrainLoop
def run(settings):
settings.description = 'train settings for dvd'
dist_util.setup_dist()
torch.cuda.set_device(dist_util.dev())
logger.configure(dir=f"{settings.env.train_mode}_{settings.env.dataset_name}")
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
device=dist_util.dev(),
train_mode=settings.env.train_mode,
tv=settings.env.time_variant,
**args_to_dict(settings, model_and_diffusion_defaults().keys())
)
# print(model)
if settings.env.resume_checkpoint:
state_dict = dist_util.load_state_dict(settings.env.resume_checkpoint, map_location='cpu')
# # 删除部分参数
# exclude_params = ['input_blocks.0.0.weight', 'input_blocks.0.0.bias'] # 替换为你想忽略的参数名
# for param in exclude_params:
# if param in state_dict:
# del state_dict[param]
model.load_state_dict(state_dict, strict=False)
settings.device = dist_util.dev()
print(f"Setting device to {settings.device}")
model = model.to(dist_util.dev())
schedule_sampler = create_named_schedule_sampler(settings.env.schedule_sampler, diffusion)
# if settings.env.use_gt_mask == True:
# pretrained_dewarp_model = GeoTr_Seg_womask()
# elif settings.env.use_gt_mask == False:
pretrained_line_seg_model = UNet(n_channels=3, n_classes=1)
pretrained_seg_model = Seg()
# line_model_ckpt = torch.load(settings.env.line_seg_model_path, map_location='cpu')
# print(checkpoint)
# print(pretrained_line_seg_model)
# new_state_dict = {k: v for k, v in checkpoint.items() if k.startswith('module.unet')}
# torch.save({'model': new_state_dict}, './checkpoints/backup/line_model.pth')
# new_state_dict = {}
# for key, value in line_model_ckpt.items():
# # 如果key以 'module.unet.' 开头,去掉前缀
# if key.startswith('module.seg.'):
# new_key = key[len('module.seg.'):]
# new_state_dict[new_key] = value
# else:
# pass
# # new_state_dict[key] = value
# # 保存修改后的模型权重
# torch.save({'model': new_state_dict}, './checkpoints/backup/seg_model.pth')
line_model_ckpt = dist_util.load_state_dict(settings.env.line_seg_model_path, map_location='cpu')['model']
pretrained_line_seg_model.load_state_dict(line_model_ckpt, strict=True)
pretrained_line_seg_model.to(dist_util.dev())
pretrained_line_seg_model.eval()
seg_model_ckpt = dist_util.load_state_dict(settings.env.new_seg_model_path, map_location='cpu')['model']
pretrained_seg_model.load_state_dict(seg_model_ckpt, strict=True)
pretrained_seg_model.to(dist_util.dev())
pretrained_seg_model.eval()
# pretrained_dewarp_model = GeoTr_Seg_Inf()
# reload_segmodel(pretrained_dewarp_model.msk, settings.env.seg_model_path)
# reload_model(pretrained_dewarp_model.GeoTr, settings.env.dewarping_model_path)
# pretrained_dewarp_model.to(dist_util.dev())
# pretrained_dewarp_model.eval()
logger.log("creating data loader...")
# 1. Define training and validation datasets
# datasets, pre-processing of the images is done within the network function !
if settings.env.dataset_name == 'doc_debug':
img_transforms = transforms.Compose([ArrayToTensor(get_float=False)])
flow_transform = transforms.Compose([ArrayToTensor()]) # just put channels first and put it to float
train_dataset, _ = Doc_Dataset(root=settings.env.doc_debug,
source_image_transform=img_transforms,
target_image_transform=None,
flow_transform=flow_transform,
split=1,
get_mapping=False)
train_loader = Loader('train', train_dataset, batch_size=settings.env.batch_size, shuffle=True,
drop_last=False, training=True, num_workers=settings.env.n_threads)
elif settings.env.dataset_name == 'aug_doc':
img_transforms = transforms.Compose([ArrayToTensor(get_float=False)])
flow_transform = transforms.Compose([ArrayToTensor()]) # just put channels first and put it to float
train_dataset, _ = Aug_Doc_Dataset(root=settings.env.doc_debug,
source_image_transform=img_transforms,
target_image_transform=None,
flow_transform=flow_transform,
split=1,
get_mapping=False)
elif settings.env.dataset_name == 'doc3d':
img_transforms = transforms.Compose([ArrayToTensor(get_float=False)])
flow_transform = transforms.Compose([ArrayToTensor()]) # just put channels first and put it to float
train_dataset, _ = Doc3d_Dataset(root=settings.env.doc_debug,
source_image_transform=img_transforms,
target_image_transform=None,
flow_transform=flow_transform,
split=1,
get_mapping=False)
train_loader = Loader('train', train_dataset, batch_size=settings.env.batch_size, shuffle=True,
drop_last=False, training=True, num_workers=settings.env.n_threads)
# Setting dataset name into diffusion because of the semantic setting.
setattr(diffusion, 'dataset', settings.env.dataset_name)
# but better results are obtained with using simple bilinear interpolation instead of deconvolutions.
print(colored('==> ', 'blue') + 'model created.')
logger.log("training...")
batch_preprocessing = GLUNetBatchPreprocessing(settings, apply_mask=False, apply_mask_zero_borders=False,
sparse_ground_truth=False)
# 4. Define loss module
TrainLoop(
model=model,
pretrained_dewarp_model = pretrained_seg_model,
pretrained_line_seg_model = pretrained_line_seg_model,
diffusion=diffusion,
settings=settings,
batch_preprocessing=batch_preprocessing,
data=train_loader,
batch_size=settings.env.batch_size,
microbatch=settings.env.microbatch,
lr=settings.env.lr,
ema_rate=settings.env.ema_rate,
log_interval=settings.env.log_interval,
save_interval=settings.env.save_interval,
resume_checkpoint=settings.env.resume_checkpoint,
use_fp16=settings.env.use_fp16,
fp16_scale_growth=settings.env.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=settings.env.weight_decay,
lr_anneal_steps=settings.env.lr_anneal_steps,
resume_step=settings.env.resume_step,
use_gt_mask = settings.env.use_gt_mask,
use_init_flow = settings.env.use_init_flow,
train_mode = settings.env.train_mode,
use_line_mask = settings.env.use_line_mask
).run_loop_dewarping()
|