Spaces:
Runtime error
Runtime error
File size: 12,526 Bytes
05fb4ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
#!/usr/bin/env python3.7
import os
import re
import sys
import uuid
import imageio
import numpy as np
import h5py
import cv2
# from scipy.io import loadmat
# import hdf5storage as h5
import torch
import torch.nn.functional as F
import random
# import kornia.augmentation as KA
# import kornia.geometry.transform as KG
def tight_crop(img, mask, bm): # [512,512,3]unit8 [512,512]unit8 [448,448,2] float64
# msk=((img[:,:,0]!=0)&(img[:,:,1]!=0)&(img[:,:,2]!=0)).astype(np.uint8)
size=mask.shape
[y, x] = (mask[:,:,0]).nonzero()
minx = min(x)
maxx = max(x)
miny = min(y)
maxy = max(y)
img = img[miny : maxy + 1, minx : maxx + 1, :]
mask = mask[miny : maxy + 1, minx : maxx + 1, :]
# hw_rate = (maxy-miny)/(maxx-minx) # 不需要考虑长宽比,因为测试时都是裁剪好的图片
s = 45
img = np.pad(img, ((s, s), (s, s), (0, 0)), 'constant')
mask = np.pad(mask, ((s, s), (s, s), (0, 0)), 'constant')
cx1 = random.randint(5, s - 5)
cx2 = random.randint(5, s - 5) + 1
cy1 = random.randint(5, s - 5)
cy2 = random.randint(5, s - 5) + 1
img = img[cy1 : -cy2, cx1 : -cx2, :]
mask = mask[cy1 : -cy2, cx1 : -cx2, :]
t=miny-s+cy1
b=size[0]-maxy-s+cy2
l=minx-s+cx1
r=size[1]-maxx-s+cx2
bm[:,:,1]=bm[:,:,1]-t
bm[:,:,0]=bm[:,:,0]-l
bm=511*bm/np.array([511.0-l-r, 511.0-t-b]) # 0~1
# bm0=cv2.resize(bm[:,:,0],(512,512))
# bm1=cv2.resize(bm[:,:,1],(512,512))
# bm=np.stack([bm0,bm1],axis=-1)
return img, mask, bm
# 这是一个用于裁剪图片的函数,图片中间是一个拍照文档,现有的函数
# 因为使用了“img[miny : maxy + 1, minx : maxx + 1, :]” 背景被过度裁剪了,我想在裁剪后保留完整的背景,如何修改函数
def tight_crop_new(img, mask, bm):
# img [512,512,3]unit8
# mask [512,512]unit8
# bm [448,448,2] float64
size = mask.shape
[y, x] = (mask[:, :, 0]).nonzero()
minx = min(x)
maxx = max(x)
miny = min(y)
maxy = max(y)
# # 为了保留背景,直接操作原图,不裁剪图像尺寸
# new_img = img.copy()
# new_mask = mask.copy()
# 随机添加边界内偏移(确保不超出图像边界)
offset = 25
cx1 = random.randint(5, offset)
cx2 = random.randint(5, offset)
cy1 = random.randint(5, offset)
cy2 = random.randint(5, offset)
# 调整裁剪范围并保持图像背景完整
final_minx = max(0, minx - cx1)
final_maxx = min(size[1], maxx + cx2)
final_miny = max(0, miny - cy1)
final_maxy = min(size[0], maxy + cy2)
# 裁剪出包含文档的区域,但保留背景尺寸
cropped_img = img[final_miny:final_maxy, final_minx:final_maxx, :]
cropped_mask = mask[final_miny:final_maxy, final_minx:final_maxx, :]
# 更新 bm 的坐标
t = final_miny
b = size[0] - final_maxy
l = final_minx
r = size[1] - final_maxx
bm[:, :, 1] = bm[:, :, 1] - t
bm[:, :, 0] = bm[:, :, 0] - l
bm = 511 * bm / np.array([511.0 - l - r, 511.0 - t - b]) # 0~1
return cropped_img, cropped_mask/255., bm
def augmentation(img, mask, bm, bg=None): # [512,512,3]unit8 [512,512,1]unit8 [448,448,2] float64 [512,512,3] unit8
# tight crop
img, mask, bm = tight_crop_new(img, mask, bm)
# replace bg
[fh, fw, _] = img.shape
chance=random.random()
# chance = 0.25
if chance > 0.3:
bg = cv2.resize(bg, (200, 200))
bg = np.tile(bg, (3, 3, 1)) # (600, 600, 3)
bg = bg[: fh, : fw, :]
msk = mask
elif chance < 0.3 and chance> 0.2:
c = np.array([random.random(), random.random(), random.random()])
bg = np.ones((fh, fw, 3)) * c
msk = mask
# cv2.imwrite("vis_hp/debug_vis/tex2.png", bg)
else:
bg=np.zeros((fh, fw, 3))
msk=np.ones((fh, fw, 3))
img = bg * (1 - msk) + img * msk
# cv2.imwrite("vis_hp/debug_vis/replace.png", img)
mask = cv2.resize(mask, (512, 512))
img = cv2.resize(img, (512, 512))
# msk=((bm[:,:,0]!=0)&(bm[:,:,1]!=0)&(bm[:,:,2]!=0)).astype(np.uint8)
return img, mask, bm
# Argument parsing
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def read(file):
if file.endswith('.float3'): return readFloat(file)
elif file.endswith('.flo'): return readFlow(file)
elif file.endswith('.ppm'): return readImage(file)
elif file.endswith('.pgm'): return readImage(file)
elif file.endswith('.png'): return readImage(file)
elif file.endswith('.jpg'): return readImage(file)
elif file.endswith('.pfm'): return readPFM(file)[0]
else: raise Exception('don\'t know how to read %s' % file)
def write(file, data):
if file.endswith('.float3'): return writeFloat(file, data)
elif file.endswith('.flo'): return writeFlow(file, data)
elif file.endswith('.ppm'): return writeImage(file, data)
elif file.endswith('.pgm'): return writeImage(file, data)
elif file.endswith('.png'): return writeImage(file, data)
elif file.endswith('.jpg'): return writeImage(file, data)
elif file.endswith('.pfm'): return writePFM(file, data)
else: raise Exception('don\'t know how to write %s' % file)
def load_gt_flow_npz(bm_path):
# # bm = np.transpose(h5py.File(bm_path,'r',libver='latest', swmr=True)["bm"])
# try:
# bm = h5.loadmat(bm_path)['bm'] # (1024, 1024, 2) from 0~1024
# except:
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
# print(bm_path)
# bm = (bm/np.array([1024,1024])).astype(np.float32) # (1024, 1024, 2) from 0~1
# bm[:,:,0] = bm[:,:,0]*512 # (1024, 1024, 2) from 0~512
# bm[:,:,1] = bm[:,:,1]*384
# bm = torch.from_numpy(bm.transpose(2,0,1)).unsqueeze(0) # (1,2,384,512)
# bm = F.interpolate(bm,size=(384,512),mode='bilinear',
# align_corners=True) # (1,2,384,512)
try:
bm = np.load(bm_path)['warped_BM'][:447,:447,:]*511 + 0.4# (448, 448, 2) range[0-1] # 先y后x,行序优先
# bm[:,:,0] = bm[:,:,0]*447 # (448, 448, 2) from 0~448
# bm[:,:,1] = bm[:,:,1]*447
bm0=cv2.resize(bm[:,:,0],(512,512))
bm1=cv2.resize(bm[:,:,1],(512,512))
bm=np.stack([bm0,bm1],axis=-1)
bm = np.roll(bm, shift=1, axis=-1) # # 先x后y,行序优先, 绝对位置bm
# bm = bm.transpose((2,0,1))
except:
print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
print(bm_path)
# bm = (bm/np.array([1024,1024])).astype(np.float32) # (1024, 1024, 2) from 0~1
# bm[:,:,0] = bm[:,:,0]*520 # (1024, 1024, 2) from 0~512
# bm[:,:,1] = bm[:,:,1]*520
# bm = torch.from_numpy(bm.transpose(2,0,1)).unsqueeze(0) # [1, 2, 1024, 1024]
# bm = F.interpolate(bm,size=(384,512),mode='bilinear',
# align_corners=True) # (1,2,384,512)
return bm
def load_gt_flow_mat(bm_path):
try:
# bm = h5.loadmat(bm_path)['bm']# (448, 448, 2) range[0-1] # 先y后x,行序优先
with h5py.File(bm_path, 'r') as f:
bm = f['bm'][:].transpose((2,1,0))[:447,:447,:]*(511/447) - 1.2 # (447, 447, 2)
bm0=cv2.resize(bm[:,:,0],(512,512))
bm1=cv2.resize(bm[:,:,1],(512,512))
bm=np.stack([bm0,bm1],axis=-1)
# bm[:,:,0] = bm[:,:,0]*448 # (448, 448, 2) from 0~448
# bm[:,:,1] = bm[:,:,1]*448
# bm = np.roll(bm, shift=1, axis=-1)
except:
print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
print(bm_path)
return bm # 先x后y,行序优先, 绝对位置bm (448, 448, 2) from 0~448
def load_flo(path):
with open(path, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
assert(202021.25 == magic),'Magic number incorrect. Invalid .flo file'
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
data = np.fromfile(f, np.float32, count=2*w*h)
# Reshape data into 3D array (columns, rows, bands)
data2D = np.resize(data, (h, w, 2))
return data2D
def readPFM(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == 'PF':
color = True
elif header.decode("ascii") == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def writePFM(file, image, scale=1):
file = open(file, 'wb')
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n'.encode())
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n'.encode() % scale)
image.tofile(file)
def readFlow(path):
with open(path, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
assert(202021.25 == magic),'Magic number incorrect. Invalid .flo file'
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
data = np.fromfile(f, np.float32, count=2*w*h)
# Reshape data into 3D array (columns, rows, bands)
data2D = np.resize(data, (h, w, 2))
return data2D.astype(np.float32)
def readImage(name):
if name.endswith('.pfm') or name.endswith('.PFM'):
data = readPFM(name)[0]
if len(data.shape)==3:
return data[:,:,0:3]
else:
return data
return imageio.imread(name)
def writeImage(name, data):
if name.endswith('.pfm') or name.endswith('.PFM'):
return writePFM(name, data, 1)
return imageio.imwrite(name, data)
def writeFlow(flow, name_to_save, save_dir):
name=os.path.join(save_dir, name_to_save)
f = open(name, 'wb')
magic=202021.25
np.array([magic], dtype=np.float32).tofile(f)
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
flow = flow.astype(np.float32)
flow.tofile(f)
def writeMask(mask, name_to_save, save_dir):
name = os.path.join(save_dir, name_to_save)
mask = mask.astype(np.uint8)
if mask.max() != 255:
mask *= 255
imageio.imwrite(name, mask.astype(np.uint8))
def readFloat(name):
f = open(name, 'rb')
if(f.readline().decode("utf-8")) != 'float\n':
raise Exception('float file %s did not contain <float> keyword' % name)
dim = int(f.readline())
dims = []
count = 1
for i in range(0, dim):
d = int(f.readline())
dims.append(d)
count *= d
dims = list(reversed(dims))
data = np.fromfile(f, np.float32, count).reshape(dims)
if dim > 2:
data = np.transpose(data, (2, 1, 0))
data = np.transpose(data, (1, 0, 2))
return data
def writeFloat(name, data):
f = open(name, 'wb')
dim=len(data.shape)
if dim>3:
raise Exception('bad float file dimension: %d' % dim)
f.write(('float\n').encode('ascii'))
f.write(('%d\n' % dim).encode('ascii'))
if dim == 1:
f.write(('%d\n' % data.shape[0]).encode('ascii'))
else:
f.write(('%d\n' % data.shape[1]).encode('ascii'))
f.write(('%d\n' % data.shape[0]).encode('ascii'))
for i in range(2, dim):
f.write(('%d\n' % data.shape[i]).encode('ascii'))
data = data.astype(np.float32)
if dim==2:
data.tofile(f)
else:
np.transpose(data, (2, 0, 1)).tofile(f)
|