File size: 6,360 Bytes
05fb4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numbers

import cv2
import numpy as np
from einops import rearrange
from scipy import ndimage


class Scale(object):

    def __init__(self, size, order=2):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.order = order

    def __call__(self, inputs, target, mask=None):
        h, w, _ = inputs[0].shape
        if (h,w) == self.size:
            if mask is not None:
                return inputs, target, mask
            else:
                return inputs, target

        ratio_h = float(self.size[0])/float(h)
        ratio_w = float(self.size[1])/float(w)
        inputs[0] = ndimage.interpolation.zoom(inputs[0], (ratio_h,ratio_w,1), order=self.order)
        inputs[1] = ndimage.interpolation.zoom(inputs[1], (ratio_h,ratio_w,1), order=self.order)
        target = ndimage.interpolation.zoom(target, (ratio_h,ratio_w,1), order=self.order)
        target[:, :, 0] *= ratio_w
        target[:, :, 1] *= ratio_h
        if mask is not None:
            mask = ndimage.interpolation.zoom(mask, (ratio_h, ratio_w), order=self.order)
            return inputs, target, mask
        else:
            return inputs, target
        
def resize_flow(flow, size):
    flow = flow.clone()
    h_o, w_o = flow.size()[-2:]
    h, w = size[-2:]
    
    ratio_h = float(h)/float(h_o)
    ratio_w = float(w)/float(w_o)
    flow[:, 0, :, :] *= ratio_w
    flow[:, 1, :, :] *= ratio_h

    flow = F.interpolate(flow, size=(h, w), mode='bilinear', align_corners=True)
    return flow

def tile_image(img, tile_shape=(128, 128)):
    """
    Arguments:
        img: tensor shape of (3, 512, 512)
        tile_shape: tuple
    """
    _, H, W = img.shape
    tile = rearrange(img, 'C (T1 H) (T2 W) -> (T1 T2) C H W', H=tile_shape[0], W=tile_shape[1])
    return tile

def tile_to_image(tile):
    T = int((tile.shape[0]) ** 0.5)
    return rearrange(tile, '(T1 T2) C H W -> C (T1 H) (T2 W)', T1=T, T2=T)

def resize_keeping_aspect_ratio(image, size=512):
    _, C, H, W = image.shape
    if H > W:
        ratio = size / H
        H_ = size
        W_ = int(W * ratio)
    else:
        ratio = size / W
        H_ = int(H * ratio)
        W_ = size
    image = F.interpolate(image.float(), size=(H_, W_), mode='bilinear', align_corners=True)
    image = F.pad(image, pad=(0, size - W_, 0, size - H_), mode='constant')
    return image, ratio
    
    
def resize_keeping_aspect_ratio(image, size):
    h, w, _ = image.shape
    if h > w:
        ratio = float(size) / float(h)
    else:
        ratio = float(size) / float(w)
    new_h = int(h*ratio)
    new_w = int(w*ratio)
    return cv2.resize(image, (new_w, new_h)), ratio


def pad_to_same_shape(im1, im2):
    # pad to same shape
    if im1.shape[0] <= im2.shape[0]:
        pad_y_1 = im2.shape[0] - im1.shape[0]
        pad_y_2 = 0
    else:
        pad_y_1 = 0
        pad_y_2 = im1.shape[0] - im2.shape[0]
    if im1.shape[1] <= im2.shape[1]:
        pad_x_1 = im2.shape[1] - im1.shape[1]
        pad_x_2 = 0
    else:
        pad_x_1 = 0
        pad_x_2 = im1.shape[1] - im2.shape[1]
    im1 = cv2.copyMakeBorder(im1, 0, pad_y_1, 0, pad_x_1, cv2.BORDER_CONSTANT)
    im2 = cv2.copyMakeBorder(im2, 0, pad_y_2, 0, pad_x_2, cv2.BORDER_CONSTANT)
    shape = im1.shape
    return im1, im2


def pad_to_size(im, size):
    # load_size first h then w
    if not isinstance(size, tuple):
        size = (size, size)
    # pad to same shape
    if im.shape[0] < size[0]:
        pad_y_1 = size[0] - im.shape[0]
    else:
        pad_y_1 = 0
    if im.shape[1] < size[1]:
        pad_x_1 = size[1] - im.shape[1]
    else:
        pad_x_1 = 0

    im = cv2.copyMakeBorder(im, 0, pad_y_1, 0, pad_x_1, cv2.BORDER_CONSTANT)
    return im


def center_pad(im, size):
    # load_size first h then w
    if not isinstance(size, tuple):
        size = (size, size)
    # pad to same shape
    if im.shape[0] < size[0]:
        pad_y_1 = size[0] - im.shape[0]
    else:
        pad_y_1 = 0
    if im.shape[1] < size[1]:
        pad_x_1 = size[1] - im.shape[1]
    else:
        pad_x_1 = 0

    im = cv2.copyMakeBorder(im, pad_y_1//2, pad_y_1-pad_y_1//2, pad_x_1//2, pad_x_1-pad_x_1//2, cv2.BORDER_CONSTANT)
    return im


def center_crop(img, size):
    """
    Get the center crop of the input image
    Args:
        img: input image [HxWxC]
        size: load_size of the center crop (tuple) (width, height)
    Output:
        img_pad: center crop
        x, y: coordinates of the crop
    """

    if not isinstance(size, tuple):
        size = (size, size)
        #load_size is W,H

    img = img.copy()
    h, w = img.shape[:2]

    pad_w = 0
    pad_h = 0
    if w < size[0]:
        pad_w = np.int(np.ceil((size[0] - w) / 2))
    if h < size[1]:
        pad_h = np.int(np.ceil((size[1] - h) / 2))
    img_pad = cv2.copyMakeBorder(img,
                                 pad_h,
                                 pad_h,
                                 pad_w,
                                 pad_w,
                                 cv2.BORDER_CONSTANT,
                                 value=[0, 0, 0])
    h, w = img_pad.shape[:2]

    x1 = w // 2 - size[0] // 2
    y1 = h // 2 - size[1] // 2

    img_pad = img_pad[y1:y1 + size[1], x1:x1 + size[0], :]

    return img_pad, x1, y1


def crop(img, size, x1, y1):
    """
    Get the center crop of the input image
    Args:
        img: input image [HxWxC]
        size: load_size of the center crop (tuple) (width, height)
    Output:
        img_pad: center crop
        x, y: coordinates of the crop
    """

    if not isinstance(size, tuple):
        size = (size, size)
        #load_size is W,H

    img = img.copy()
    h, w = img.shape[:2]

    pad_w = 0
    pad_h = 0
    if w < (x1 + size[0]):
        pad_w = np.int(np.ceil(((size[0] + x1) - w) / 2))
    if h < (y1+size[1]):
        pad_h = np.int(np.ceil(((y1+size[1]) - h) / 2))
    img_pad = cv2.copyMakeBorder(img,
                                 pad_h,
                                 pad_h,
                                 pad_w,
                                 pad_w,
                                 cv2.BORDER_CONSTANT,
                                 value=[0, 0, 0])
    h, w = img_pad.shape[:2]
    img_pad = img_pad[y1:y1 + size[1], x1:x1 + size[0], :]

    return img_pad, x1, y1