DvD / app.py
hanquansanren's picture
QQQ
a5559ee
import argparse
import random
from datetime import date
from shutil import copyfile
import cv2 as cv
import numpy as np
from spaces import GPU
import torch
import torch.backends.cudnn
import admin.settings as ws_settings
import os
import shutil
from pathlib import Path
# os.environ["CUDA_VISIBLE_DEVICES"] = "7"
# os.environ["OPENAI_LOGDIR"] = "./logs"
# os.environ["MPI_DISABLED"] = "1"
# os.environ.getattribute("HF_TOKEN")
token = os.getenv("HF_TOKEN", None)
import torch
import torch.distributed as dist
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import datasets
from utils_data.image_transforms import ArrayToTensor
from train_settings.dvd.improved_diffusion import dist_util, logger
from train_settings.dvd.improved_diffusion.script_util import args_to_dict, create_model_and_diffusion,model_and_diffusion_defaults
from train_settings.models.geotr.geotr_core import GeoTr_Seg_Inf, reload_segmodel, reload_model, Seg
from train_settings.models.geotr.unet_model import UNet
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torch as th
from train_settings.dvd.improved_diffusion.gaussian_diffusion import GaussianDiffusion
from train_settings.dvd.feature_backbones.VGG_features import VGGPyramid
from train_settings.dvd.eval_utils import extract_raw_features_single,extract_raw_features_single2
from datasets.utils.warping import register_model2
import gradio as gr
from huggingface_hub import hf_hub_download
reg_model_bilin = register_model2((512,512), 'bilinear')
def coords_grid_tensor(perturbed_img_shape):
im_x, im_y = np.mgrid[0:perturbed_img_shape[0]-1:complex(perturbed_img_shape[0]), 0:perturbed_img_shape[1]-1:complex(perturbed_img_shape[1])]
coords = np.stack((im_y,im_x), axis=2) # 先x后y,行序优先
coords = th.from_numpy(coords).float().permute(2,0,1).to('cuda') # (2, 512, 512)
return coords.unsqueeze(0) # [2, 512, 512]
def run_sample_lr_dewarping(
settings, logger, diffusion, model, radius, source, feature_size,
raw_corr, init_flow, c20, source_64, pyramid, doc_mask,
seg_map_all=None, textline_map=None, init_feat=None
):
model_kwsettings = {'init_flow': init_flow, 'src_feat': c20, 'src_64':None,
'y512':source, 'tmode':settings.env.train_mode,
'mask_cat': doc_mask,
'init_feat': init_feat,
'iter': settings.env.iter} # 'trg_feat': trg_feat
# [1, 81, 64, 64] [1, 2, 64, 64] [1, 64, 64, 64]
if settings.env.use_gt_mask == False:
model_kwsettings['mask_y512'] = seg_map_all # [b, 384, 64, 64]
if settings.env.use_line_mask == True:
model_kwsettings['line_msk'] = textline_map #
image_size_h, image_size_w = feature_size, feature_size
logger.info(f"\nStarting sampling")
sample, _ = diffusion.ddim_sample_loop(
model,
(1, 2, image_size_h, image_size_w), # 1,2,64,64
noise=None,
clip_denoised=settings.env.clip_denoised, # false
model_kwargs=model_kwsettings,
eta=0.0,
progress=True,
denoised_fn=None,
sampling_kwargs={'src_img': source}, # 'trg_img': target
logger=logger,
n_batch=settings.env.n_batch,
time_variant = settings.env.time_variant,
pyramid=pyramid
)
sample = th.clamp(sample, min=-1, max=1)
return sample
def visualize_dewarping_single(settings, sample, source_vis):
# os.makedirs(f'vis_hp/{settings.env.eval_dataset_name}/{settings.name}/dewarped_pred', exist_ok=True) # pred dewarped
# warped_src = warp(source_vis.to(sample.device).float(), sample) # [1, 3, 1629, 981]
warped_src = reg_model_bilin([source_vis.to(sample.device).float(), sample])
warped_src = warped_src[0].permute(1, 2, 0).detach().cpu().numpy()#*255. # (1873, 1353, 3)
warped_src = Image.fromarray((warped_src).astype(np.uint8))
return warped_src
def prepare_data_single(input_image, input_image_ori):
source_vis = input_image_ori
target_vis = None
_, _, H_ori, W_ori = source_vis.shape
source = input_image.to('cuda') # [1, 3, 914, 1380] torch.float32
source_0 = None
target = None
batch_ori = None
batch_ori_inter = None
target = None
target_256 = None
source_256 = torch.nn.functional.interpolate(input=source.float(), size=(256, 256), mode='area').to('cuda')
target_256 = None
mask = torch.ones((1, 512, 512), dtype=torch.bool).to('cuda') # None
return input_image, H_ori, W_ori, source, target, batch_ori, batch_ori_inter, source_256, target_256, source_vis, target_vis, mask, source_0
@GPU
def run_single_docunet(input_image_ori):
input_image_ori = np.array(input_image_ori, dtype=np.uint8) # [x, y, 3]
# resize to 512x512
input_image_resized = cv.resize(input_image_ori, (512, 512)) # [512, 512, 3]
# transpose to [3, 512, 512]
input_image_ori = np.transpose(input_image_ori, (2, 0, 1)) # [3, 512, 512]
input_image = np.transpose(input_image_resized, (2, 0, 1)) # [3, 512, 512]
input_image = input_image / 255
input_image_ori = torch.tensor(input_image_ori).unsqueeze(0) # [1, 3, 512, 512]
input_image = torch.tensor(input_image).unsqueeze(0).float() # [1, 3, 512, 512]
os.makedirs(f'vis_hp/{settings.env.eval_dataset_name}/{settings.name}', exist_ok=True)
batch_preprocessing = None
pyramid = VGGPyramid(train=False).to('cuda')
SIZE = None
radius = 4
raw_corr = None
source_288 = F.interpolate(input_image, size=(288), mode='bilinear', align_corners=True).to('cuda')
if settings.env.time_variant == True:
init_feat = torch.zeros((input_image.shape[0], 256, 64, 64), dtype=torch.float32).to('cuda')
else:
init_feat = None
with torch.inference_mode():
ref_bm, mask_x = pretrained_dewarp_model(source_288) # [1,2,288,288] 0~288 0~1
ref_flow = ref_bm/287.0 # [-1, 1] # [1,2,288,288]
if settings.env.use_init_flow:
init_flow = F.interpolate(ref_flow, size=(64), mode='bilinear', align_corners=True) # [24, 2, 64, 64]
else:
init_flow = torch.zeros((input_image.shape[0], 2, 64, 64), dtype=torch.float32).to('cuda')
(
data,
H_ori, # 512
W_ori, # 512
source, # [1, 3, 512, 512] 0-1
target, # None
batch_ori, # None
batch_ori_inter, # None
source_256,# [1, 3, 256, 256] 0-1
target_256, # None
source_vis, # [1, 3, H, W] cpu仅用于可视化
target_vis, # None
mask, # [1, 512, 512] 全白
source_0
) = prepare_data_single(input_image, input_image_ori)
with torch.no_grad():
if settings.env.use_gt_mask == False:
# ref_bm, mask_x = self.pretrained_dewarp_model(source_288) # [1,2,288,288] bm 0~288 mskx0-256
mskx, d0, hx6, hx5d, hx4d, hx3d, hx2d, hx1d = pretrained_seg_model(source_288)
hx6 = F.interpolate(hx6, size=64, mode='bilinear', align_corners=False)
hx5d = F.interpolate(hx5d, size=64, mode='bilinear', align_corners=False)
hx4d = F.interpolate(hx4d, size=64, mode='bilinear', align_corners=False)
hx3d = F.interpolate(hx3d, size=64, mode='bilinear', align_corners=False)
hx2d = F.interpolate(hx2d, size=64, mode='bilinear', align_corners=False)
hx1d = F.interpolate(hx1d, size=64, mode='bilinear', align_corners=False)
seg_map_all = torch.cat((hx6, hx5d, hx4d, hx3d, hx2d, hx1d), dim=1) # [b, 384, 64, 64]
# tv_save_image(mskx,"vis_hp/debug_vis/mskx.png")
if settings.env.use_line_mask:
textline_map, textline_mask = pretrained_line_seg_model(mskx) # [3, 64, 256, 256]
textline_map = F.interpolate(textline_map, size=64, mode='bilinear', align_corners=False) # [3, 64, 64, 64]
else:
seg_map_all = None
textline_map = None
if settings.env.train_VGG:
c20 = None
feature_size = 64
else:
feature_size = 64
if settings.env.train_mode == 'stage_1_dit_cat' or settings.env.train_mode =='stage_1_dit_cross':
with th.no_grad():
c20 = extract_raw_features_single2(pyramid, source, source_256, feature_size) # [24, 1, 64, 64, 64, 64]
# 平均互相关,VGG最浅层特征的下采样(512*512->64*64)
else:
with th.no_grad():
c20 = extract_raw_features_single(pyramid, source, source_256, feature_size) # [24, 1, 64, 64, 64, 64]
# 平均互相关,VGG最浅层特征的下采样(512*512->64*64)
source_64 = None # F.interpolate(source, size=(feature_size), mode='bilinear', align_corners=True)
logger.info(f"Starting sampling with VGG Features")
sample = run_sample_lr_dewarping(
settings,
logger,
diffusion,
model,
radius, # 4
source, # [B, 3, 512, 512] 0~1
feature_size, # 64
raw_corr, # None
init_flow, # [B, 2, 64, 64] -1~1
c20, # # [B, 64, 64, 64]
source_64, # None
pyramid,
mask_x, #mask_x, # F.interpolate(mskx, size=(512), mode='bilinear', align_corners=True)[:,:1,:,:] , # mask_x
seg_map_all,
textline_map,
init_feat
) # sample: [1, 2, 64, 64] 偏移量 [-1,1]范围 五步DDIM的结果
if settings.env.use_sr_net == False:
sample = F.interpolate(sample, size=(H_ori, W_ori), mode='bilinear', align_corners=True) # [-1,+1] 偏移场
# sample[:, 0, :, :] = sample[:, 0, :, :] * W_ori
# sample[:, 1, :, :] = sample[:, 1, :, :] * H_ori
base = F.interpolate(coords_grid_tensor((512,512))/511., size=(H_ori, W_ori), mode='bilinear', align_corners=True)
# sample = ( ((sample + base.to(sample.device)) )*2 - 1 )
sample = ( ((sample + base.to(sample.device))*1 )*2 - 1 )*0.987 # (2 * (bm / 286.8) - 1) * 0.99
ref_flow = None
if ref_flow is not None:
ref_flow = F.interpolate(ref_flow, size=(H_ori, W_ori), mode='bilinear', align_corners=True) # [-1,+1] 偏移场
# ref_flow[:, 0, :, :] = ref_flow[:, 0, :, :] * W_ori
# ref_flow[:, 1, :, :] = ref_flow[:, 1, :, :] * H_ori
ref_flow = (ref_flow + base.to(ref_flow.device))*2 -1
# init_flow = F.interpolate(init_flow, size=(H_ori, W_ori), mode='bilinear', align_corners=True)
else:
raise ValueError("Invalid value")
output = visualize_dewarping_single(settings, sample, source_vis)
return output
parser = argparse.ArgumentParser(description='Run a sampling scripts in train_settings.')
parser.add_argument('--train_module', type=str, default='dvd', help='Name of module in the "train_settings/" folder.')
parser.add_argument('--train_name', type=str, default='val_TDiff', help='Name of the train settings file.')
parser.add_argument('--cudnn_benchmark', type=bool, default=True, help='Set cudnn benchmark on (1) or off (0) (default is on).')
parser.add_argument('--seed', type=int, default=1992, help='Pseudo-RNG seed')
parser.add_argument('--name', type=str, default="gradio", help='Name of the experiment')
parser.add_argument('--corruption', action='store_true') # 默认为false,触发则为true
args = parser.parse_args()
args.seed = random.randint(0, 3000000)
args.seed = torch.initial_seed() & (2 ** 32 - 1)
print('Seed is {}'.format(args.seed))
random.seed(int(args.seed))
np.random.seed(args.seed)
cudnn_benchmark=args.cudnn_benchmark
seed=args.seed
corruption=args.corruption
name=args.name
# This is needed to avoid strange crashes related to opencv
cv.setNumThreads(0)
torch.backends.cudnn.benchmark = cudnn_benchmark
# dd/mm/YY
today = date.today()
d1 = today.strftime("%d/%m/%Y")
print('Sampling: {} {}\nDate: {}'.format(args.train_module, args.train_name, d1))
settings = ws_settings.Settings()
settings.module_name = args.train_module
settings.script_name = args.train_name
settings.project_path = 'train_settings/{}/{}'.format(args.train_module, args.train_name) # 'train_settings/DiffMatch/val_DiffMatch'
settings.seed = seed
settings.name = name
save_dir = os.path.join(settings.env.workspace_dir, settings.project_path) # 'checkpoints+train_settings/DiffMatch/val_DiffMatch'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
copyfile(settings.project_path + '.py', os.path.join(save_dir, settings.script_name + '.py'))
settings.severity = 0
settings.corruption_number = 0
# dist_util.setup_dist()
logger.configure(dir=f"SAMPLING_{settings.env.eval_dataset}_{settings.name}")
logger.log(f"Corruption Disabled. Evaluating on Original {settings.env.eval_dataset}")
logger.log("Loading model and diffusion...")
model, diffusion = create_model_and_diffusion(
device='cuda',
train_mode=settings.env.train_mode, # stage 1
tv=settings.env.time_variant,
**args_to_dict(settings, model_and_diffusion_defaults().keys()),
)
setattr(diffusion, "settings", settings)
pretrained_dewarp_model = GeoTr_Seg_Inf()
settings.env.seg_model_path = hf_hub_download(repo_id="hanquansanren/DvD", filename="seg.pth", token=token)
reload_segmodel(pretrained_dewarp_model.msk, settings.env.seg_model_path)
# reload_model(pretrained_dewarp_model.GeoTr, settings.env.dewarping_model_path)
pretrained_dewarp_model.to('cuda')
pretrained_dewarp_model.eval()
if settings.env.use_line_mask:
pretrained_line_seg_model = UNet(n_channels=3, n_classes=1)
pretrained_seg_model = Seg()
settings.env.line_seg_model_path = hf_hub_download(repo_id="hanquansanren/DvD", filename="line_model2.pth", token=token)
# line_model_ckpt = pretrained_line_seg_model.load_state_dict(settings.env.line_seg_model_path, map_location='cpu')['model']
line_model_ckpt = torch.load(settings.env.line_seg_model_path, map_location='cpu')['model']
pretrained_line_seg_model.load_state_dict(line_model_ckpt, strict=True)
pretrained_line_seg_model.to('cuda')
pretrained_line_seg_model.eval()
settings.env.new_seg_model_path = hf_hub_download(repo_id="hanquansanren/DvD", filename="seg_model.pth", token=token)
# seg_model_ckpt = pretrained_seg_model.load_state_dict(settings.env.new_seg_model_path, map_location='cpu')['model']
seg_model_ckpt = torch.load(settings.env.new_seg_model_path, map_location='cpu')['model']
pretrained_seg_model.load_state_dict(seg_model_ckpt, strict=True)
pretrained_seg_model.to('cuda')
pretrained_seg_model.eval()
settings.env.model_path = hf_hub_download(repo_id="hanquansanren/DvD", filename="model1852000.pt", token=token)
# model.cpu().load_state_dict(dist_util.load_state_dict(settings.env.model_path, map_location="cpu"), strict=False)
model_ckpt = torch.load(settings.env.model_path, map_location='cpu')
model.cpu().load_state_dict(model_ckpt, strict=False)
logger.log(f"Model loaded with {settings.env.model_path}")
model.to('cuda')
model.eval()
if __name__ == '__main__':
# demo = gr.Interface(
# fn=run_single_docunet,
# inputs=[
# gr.Image(type="pil", label="Input Image"),
# ],
# outputs=[
# gr.Image(type="numpy", label="Output Image"),
# ],
# title="Document Image Dewarping",
# description="This is a demo for SIGGRAPH Asia 2025 paper 'DvD: Unleashing a Generative Paradigm for Document Dewarping via Coordinates-based Diffusion Model' ",
# examples=EXAMPLES
# )
example_img_list = []
for name in ['3_2 copy.png', '25_1 copy.png']:
local_path = hf_hub_download(
repo_id="hanquansanren/DvD",
filename=f"examples/{name}",
token=token
)
dest_path = Path("examples") / name
dest_path.parent.mkdir(exist_ok=True)
shutil.copy(local_path, dest_path)
example_img_list.append([str(dest_path)])
# example_img_list.append(local_path)
print(example_img_list)
with gr.Blocks() as demo:
gr.Markdown("<h2 style='text-align: center;'>Document Image Dewarping Demo</h2>")
gr.Markdown("This is a demo for SIGGRAPH Asia 2025 paper 'DvD: Unleashing a Generative Paradigm for Document Dewarping via Coordinates-based Diffusion Model' ")
with gr.Row():
input_image = gr.Image(type="pil", label="Input Image")
output_image = gr.Image(type="numpy", label="Output Image")
gr.Examples(
examples=example_img_list,
inputs=[input_image],
label="Click an example to load into Input Image"
)
run_btn = gr.Button("Run")
run_btn.click(fn=run_single_docunet, inputs=[input_image], outputs=[output_image])
# demo.launch(share=True, debug=True, server_name="10.7.88.77")
demo.launch(ssr_mode=False)