Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import pathlib | |
| import gradio as gr | |
| import slugify | |
| from constants import UploadTarget | |
| from uploader import Uploader | |
| from utils import find_exp_dirs | |
| class LoRAModelUploader(Uploader): | |
| def upload_lora_model( | |
| self, | |
| folder_path: str, | |
| repo_name: str, | |
| upload_to: str, | |
| private: bool, | |
| delete_existing_repo: bool, | |
| ) -> str: | |
| if not folder_path: | |
| raise ValueError | |
| if not repo_name: | |
| repo_name = pathlib.Path(folder_path).name | |
| repo_name = slugify.slugify(repo_name) | |
| if upload_to == UploadTarget.PERSONAL_PROFILE.value: | |
| organization = '' | |
| elif upload_to == UploadTarget.LORA_LIBRARY.value: | |
| organization = 'lora-library' | |
| else: | |
| raise ValueError | |
| return self.upload(folder_path, | |
| repo_name, | |
| organization=organization, | |
| private=private, | |
| delete_existing_repo=delete_existing_repo) | |
| def load_local_lora_model_list() -> dict: | |
| choices = find_exp_dirs(ignore_repo=True) | |
| return gr.update(choices=choices, value=choices[0] if choices else None) | |
| def create_upload_demo(hf_token: str | None) -> gr.Blocks: | |
| uploader = LoRAModelUploader(hf_token) | |
| model_dirs = find_exp_dirs(ignore_repo=True) | |
| with gr.Blocks() as demo: | |
| with gr.Box(): | |
| gr.Markdown('Local Models') | |
| reload_button = gr.Button('Reload Model List') | |
| model_dir = gr.Dropdown( | |
| label='Model names', | |
| choices=model_dirs, | |
| value=model_dirs[0] if model_dirs else None) | |
| with gr.Box(): | |
| gr.Markdown('Upload Settings') | |
| with gr.Row(): | |
| use_private_repo = gr.Checkbox(label='Private', value=True) | |
| delete_existing_repo = gr.Checkbox( | |
| label='Delete existing repo of the same name', value=False) | |
| upload_to = gr.Radio(label='Upload to', | |
| choices=[_.value for _ in UploadTarget], | |
| value=UploadTarget.LORA_LIBRARY.value) | |
| model_name = gr.Textbox(label='Model Name') | |
| upload_button = gr.Button('Upload') | |
| gr.Markdown(''' | |
| - You can upload your trained model to your personal profile (i.e. https://huggingface.co/{your_username}/{model_name}) or to the public [LoRA Concepts Library](https://huggingface.co/lora-library) (i.e. https://huggingface.co/lora-library/{model_name}). | |
| ''') | |
| with gr.Box(): | |
| gr.Markdown('Output message') | |
| output_message = gr.Markdown() | |
| reload_button.click(fn=load_local_lora_model_list, | |
| inputs=None, | |
| outputs=model_dir) | |
| upload_button.click(fn=uploader.upload_lora_model, | |
| inputs=[ | |
| model_dir, | |
| model_name, | |
| upload_to, | |
| use_private_repo, | |
| delete_existing_repo, | |
| ], | |
| outputs=output_message) | |
| return demo | |
| if __name__ == '__main__': | |
| import os | |
| hf_token = os.getenv('HF_TOKEN') | |
| demo = create_upload_demo(hf_token) | |
| demo.queue(max_size=1).launch(share=False) | |