File size: 15,788 Bytes
7b974d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
from transformers import pipeline
from collections import Counter
import json
from pathlib import Path
from datetime import datetime
import numpy as np
class ChatSentimentAnalyzer:
def __init__(self):
# Initialize the emotion analysis pipeline with RoBERTa model
self.analyzer = pipeline("text-classification",
model='bhadresh-savani/roberta-base-emotion',
return_all_scores=True)
# Define emotion categories
self.emotion_labels = ['anger', 'fear', 'joy', 'love', 'sadness', 'surprise']
# Map emotions to sentiment categories
self.emotion_to_sentiment = {
'joy': 'POSITIVE',
'love': 'POSITIVE',
'surprise': 'NEUTRAL',
'anger': 'NEGATIVE',
'fear': 'NEGATIVE',
'sadness': 'NEGATIVE'
}
def analyze_chat_session(self, chat_data):
"""Analyze sentiment for a complete chat session"""
if isinstance(chat_data, str):
# If it's a file path, load the data
with open(chat_data, 'r') as f:
chat_data = json.load(f)
messages = chat_data.get('messages', [])
# Separate user and assistant messages
user_messages = []
assistant_messages = []
for msg in messages:
if msg['role'] == 'user':
user_messages.append({
'content': msg['content'],
'timestamp': msg['timestamp']
})
elif msg['role'] == 'assistant':
assistant_messages.append({
'content': msg['content'],
'timestamp': msg['timestamp'],
'agent': msg.get('agent', 'Unknown')
})
# Analyze sentiments
user_sentiments = self._analyze_messages(user_messages, 'user')
assistant_sentiments = self._analyze_messages(assistant_messages, 'assistant')
# Calculate session metrics
session_metrics = self._calculate_session_metrics(user_sentiments, assistant_sentiments)
return {
'user_sentiments': user_sentiments,
'assistant_sentiments': assistant_sentiments,
'session_metrics': session_metrics,
'session_id': chat_data.get('session_id'),
'user_name': chat_data.get('user_name'),
'timestamp': datetime.now().isoformat()
}
def _analyze_messages(self, messages, sender_type):
"""Analyze sentiment for a list of messages"""
if not messages:
return []
# Extract just the content for analysis
contents = [msg['content'] for msg in messages]
results = []
for msg, content in zip(messages, contents):
try:
# Get emotion predictions
predictions = self.analyzer(content)
# Find the emotion with highest score
emotion_scores = predictions[0] # Get first (and only) result
top_emotion = max(emotion_scores, key=lambda x: x['score'])
# Create emotion distribution
emotion_dist = {score['label']: round(score['score'], 3)
for score in emotion_scores}
# Map to sentiment
sentiment = self.emotion_to_sentiment.get(top_emotion['label'], 'NEUTRAL')
results.append({
'content': msg['content'],
'timestamp': msg.get('timestamp'),
'emotion': top_emotion['label'],
'emotion_confidence': round(top_emotion['score'], 3),
'emotion_distribution': emotion_dist,
'sentiment': sentiment,
'sender_type': sender_type
})
except Exception as e:
print(f"Error analyzing message: {e}")
results.append({
'content': msg['content'],
'timestamp': msg.get('timestamp'),
'emotion': 'unknown',
'emotion_confidence': 0.0,
'emotion_distribution': {},
'sentiment': 'NEUTRAL',
'sender_type': sender_type
})
return results
def analyze_limited_data(self, data):
"""Optimized analysis for limited data"""
try:
all_messages = []
session_count = len(data['sessions'])
# Collect all messages
for session in data['sessions']:
all_messages.extend(session['messages'])
if not all_messages:
return {"error": "No messages to analyze"}
# Limit total messages for performance
all_messages = all_messages[:100]
# Process emotions using the existing analyzer
emotion_counts = {}
positive_count = 0
negative_count = 0
for message in all_messages:
try:
# Get emotion predictions using existing analyzer
predictions = self.analyzer(message)
emotion_scores = predictions[0]
top_emotion = max(emotion_scores, key=lambda x: x['score'])
# Count emotions
emotion = top_emotion['label']
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
# Map to sentiment using existing mapping
sentiment = self.emotion_to_sentiment.get(emotion, 'NEUTRAL')
if sentiment == 'POSITIVE':
positive_count += 1
elif sentiment == 'NEGATIVE':
negative_count += 1
except Exception as e:
print(f"Error processing message: {e}")
continue
# Calculate quick metrics
total_messages = len(all_messages)
positivity_ratio = positive_count / total_messages if total_messages > 0 else 0
# Determine dominant emotion
dominant_emotion = max(emotion_counts.items(), key=lambda x: x[1])[0] if emotion_counts else 'unknown'
# Simple trend calculation
if positive_count > negative_count * 1.5:
trend = 'IMPROVING'
elif negative_count > positive_count * 1.5:
trend = 'DECLINING'
else:
trend = 'STABLE'
return {
'total_sessions': session_count,
'total_messages_analyzed': total_messages,
'aggregated_metrics': {
'overall_positivity_ratio': positivity_ratio,
'dominant_emotion': dominant_emotion,
'emotion_distribution': emotion_counts,
'total_positive_messages': positive_count,
'total_negative_messages': negative_count,
'most_common_trend': trend,
'trend_distribution': {
'IMPROVING': 1 if trend == 'IMPROVING' else 0,
'STABLE': 1 if trend == 'STABLE' else 0,
'DECLINING': 1 if trend == 'DECLINING' else 0
}
}
}
except Exception as e:
print(f"Error in limited analysis: {e}")
return {"error": str(e)}
def _calculate_session_metrics(self, user_sentiments, assistant_sentiments):
"""Calculate overall session metrics"""
# Extract emotions and sentiments
user_emotions = [s['emotion'] for s in user_sentiments if s['emotion'] != 'unknown']
user_sentiment_labels = [s['sentiment'] for s in user_sentiments]
metrics = {
'user_emotion_distribution': Counter(user_emotions),
'user_sentiment_distribution': Counter(user_sentiment_labels),
'assistant_sentiment_distribution': Counter([s['sentiment'] for s in assistant_sentiments]),
'user_avg_confidence': np.mean([s['emotion_confidence'] for s in user_sentiments]) if user_sentiments else 0,
'assistant_avg_confidence': np.mean([s['emotion_confidence'] for s in assistant_sentiments]) if assistant_sentiments else 0,
'total_messages': len(user_sentiments) + len(assistant_sentiments),
'sentiment_trend': self._calculate_sentiment_trend(user_sentiments),
'dominant_emotion': Counter(user_emotions).most_common(1)[0][0] if user_emotions else 'unknown'
}
# Calculate emotional valence
if user_emotions:
positive_emotions = sum(1 for e in user_emotions if e in ['joy', 'love'])
negative_emotions = sum(1 for e in user_emotions if e in ['anger', 'fear', 'sadness'])
neutral_emotions = sum(1 for e in user_emotions if e in ['surprise'])
total_emotions = len(user_emotions)
metrics['emotional_valence'] = {
'positive': round(positive_emotions / total_emotions, 3),
'negative': round(negative_emotions / total_emotions, 3),
'neutral': round(neutral_emotions / total_emotions, 3)
}
# Calculate overall session sentiment
if user_sentiment_labels:
positive_count = user_sentiment_labels.count('POSITIVE')
negative_count = user_sentiment_labels.count('NEGATIVE')
metrics['overall_session_sentiment'] = 'POSITIVE' if positive_count > negative_count else 'NEGATIVE'
metrics['positivity_ratio'] = positive_count / len(user_sentiment_labels) if user_sentiment_labels else 0
return metrics
def _calculate_sentiment_trend(self, sentiments):
"""Calculate how sentiment changes over time"""
if len(sentiments) < 2:
return 'stable'
# Convert sentiments to numeric values based on emotional valence
sentiment_values = []
for s in sentiments:
if s['emotion'] in ['joy', 'love']:
sentiment_values.append(1)
elif s['emotion'] in ['anger', 'fear', 'sadness']:
sentiment_values.append(-1)
else:
sentiment_values.append(0)
# Calculate trend using simple linear regression
x = np.arange(len(sentiment_values))
y = np.array(sentiment_values)
# Calculate slope
if len(x) > 1:
slope = np.polyfit(x, y, 1)[0]
if slope > 0.1:
return 'improving'
elif slope < -0.1:
return 'declining'
else:
return 'stable'
return 'stable'
def analyze_user_history(self, user_name, sessions_dir='chat_sessions'):
"""Analyze all chat sessions for a specific user"""
sessions_path = Path(sessions_dir)
user_files = list(sessions_path.glob(f"chat_{user_name}_*.json"))
all_analyses = []
for file_path in sorted(user_files):
try:
analysis = self.analyze_chat_session(str(file_path))
all_analyses.append(analysis)
except Exception as e:
print(f"Error analyzing {file_path}: {e}")
# Aggregate metrics across all sessions
if all_analyses:
aggregated_metrics = self._aggregate_user_metrics(all_analyses)
return {
'user_name': user_name,
'total_sessions': len(all_analyses),
'session_analyses': all_analyses,
'aggregated_metrics': aggregated_metrics
}
return None
def _aggregate_user_metrics(self, analyses):
"""Aggregate metrics across multiple sessions"""
total_positive = 0
total_negative = 0
total_neutral = 0
all_trends = []
all_emotions = []
for analysis in analyses:
metrics = analysis['session_metrics']
user_dist = metrics['user_sentiment_distribution']
emotion_dist = metrics['user_emotion_distribution']
total_positive += user_dist.get('POSITIVE', 0)
total_negative += user_dist.get('NEGATIVE', 0)
total_neutral += user_dist.get('NEUTRAL', 0)
all_trends.append(metrics['sentiment_trend'])
# Collect all emotions
for emotion, count in emotion_dist.items():
all_emotions.extend([emotion] * count)
trend_counts = Counter(all_trends)
emotion_counts = Counter(all_emotions)
return {
'total_positive_messages': total_positive,
'total_negative_messages': total_negative,
'total_neutral_messages': total_neutral,
'overall_positivity_ratio': total_positive / (total_positive + total_negative + total_neutral) if (total_positive + total_negative + total_neutral) > 0 else 0,
'trend_distribution': dict(trend_counts),
'most_common_trend': trend_counts.most_common(1)[0][0] if trend_counts else 'unknown',
'emotion_distribution': dict(emotion_counts),
'dominant_emotion': emotion_counts.most_common(1)[0][0] if emotion_counts else 'unknown'
}
# Backward compatibility wrapper
def analyze_sentiments(messages, label):
analyzer = ChatSentimentAnalyzer()
results = []
for msg in messages:
try:
predictions = analyzer.analyzer(msg)
emotion_scores = predictions[0]
top_emotion = max(emotion_scores, key=lambda x: x['score'])
results.append({
'label': top_emotion['label'],
'score': top_emotion['score']
})
print(f"Message: {msg}")
print(f"Emotion: {top_emotion['label']} (Score: {round(top_emotion['score'], 2)})")
print(f"All emotions: {[(e['label'], round(e['score'], 3)) for e in emotion_scores]}\n")
except:
pass
return results
def summarize_sentiments(sentiments, label):
labels = [r["label"] for r in sentiments]
summary = Counter(labels)
print(f"📊 {label} Emotion Summary: {dict(summary)}\n")
return summary
# Example usage
if __name__ == "__main__":
analyzer = ChatSentimentAnalyzer()
# Test the emotion classifier
test_messages = [
"I love using transformers. The best part is wide range of support and its easy to use",
"I am feeling very anxious about the upcoming exam",
"This makes me so angry and frustrated",
"I'm surprised by how well this works"
]
print("Testing emotion analysis:")
print("-" * 50)
for msg in test_messages:
predictions = analyzer.analyzer(msg)
emotion_scores = predictions[0]
top_emotion = max(emotion_scores, key=lambda x: x['score'])
print(f"Message: {msg}")
print(f"Top emotion: {top_emotion['label']} ({round(top_emotion['score'], 3)})")
print(f"All emotions: {[(e['label'], round(e['score'], 3)) for e in emotion_scores]}")
print("-" * 50) |