File size: 17,513 Bytes
73bb3e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import json
from dotenv import load_dotenv
from crewai import Agent, Task, Crew
from pydantic import BaseModel, Field
# from langsmith import traceable
from textwrap import dedent
from typing import Optional
# Load environment variables
load_dotenv()
# ======================= CONFIGURATION =======================
from crew_ai.tools import MentalHealthTools, QueryVectorStoreTool, DataRetrievalTool, CrisisClassifierTool, MentalConditionClassifierTool
from crew_ai.llm_setup import get_llm
from crew_ai.questionnaire import load_questionnaires, conduct_assessment
from crew_ai.config import get_config
# Load config values
config = get_config()
# LLM Initialization
llm = get_llm()
# Tool Setup
mental_health_tools = MentalHealthTools()
crisis_classifier_tool = CrisisClassifierTool()
query_vector_store = QueryVectorStoreTool()
data_retriever_tool = DataRetrievalTool()
mental_condition_classifier_tool = MentalConditionClassifierTool()
# ======================= ASSESSMENT QUESTIONNAIRES =======================
QUESTIONS = load_questionnaires()
# ======================= OUTPUT SCHEMAS =======================
class CrisisDetectionOutput(BaseModel):
is_crisis: bool = Field(description="True if the query indicates a mental health crisis.")
explanation: str = Field(description="Reason for classifying as crisis or not.")
class MentalConditionOutput(BaseModel):
condition: str = Field(description="The diagnosed mental condition or concern.")
rationale: str = Field(description="Why the classification was made.")
class DataRetrievalOutput(BaseModel):
id: int = Field(description="User profile ID.")
name: str = Field(description="User name")
age: int = Field(description="User age")
gender: str = Field(description="Gender of user")
city_region: str = Field(description="City or region of user")
profession: str = Field(description="Profession of user")
marital_status: str = Field(description="Marital status of user")
previous_mental_diagnosis: str = Field(description="Prviously diagnosed mental health conditions of user")
ethnicity: str = Field(description="Ethnicity of user")
class RecommendationResult(BaseModel):
recommendation: Optional[str]
# ======================= AGENT FACTORY =======================
def create_agent(role: str, goal: str, backstory: str, tools=None,**kwargs) -> Agent:
return Agent(
role=role,
goal=goal,
backstory=backstory,
tools=tools or [],
llm=llm,
verbose=True,
allow_delegation=False,
**kwargs
)
# ======================= AGENTS =======================
crisis_detection_agent = create_agent(
"Crisis Detection Specialist",
"Identify immediate crisis situations and escalate if needed.",
"You are a highly empathetic and vigilant AI assistant trained to detect signs of "\
"severe distress, suicidal ideation, or other mental health emergencies. "\
"Your primary responsibility is to classify the query as crisis or no-crisis situation using the tool you have. "\
"If the tool output indicates 'is_crisis=True', then it is a CRISIS situation otherwise it is NO CRISIS situation.",
tools=[crisis_classifier_tool]
)
mental_condition_classifier_agent = create_agent(
"Mental Health Condition Classifier",
"Classify the user\'s mental health concern or condition, specifically aiming to identify the relevant questionnaire based on the condition detected.",
"You are a meticulous AI specialized in understanding various mental health "\
"states. You analyze user input and identify keywords for stress, anxiety, depression, substance abuse, bipolar, alcohol use etc. "\
"and categorize their current concern, with a preference for matching it to a standard assessment "\
"like PHQ-9 (depression), GAD-7 (anxiety), DAST-10 (substance abuse), AUDIT (Alcohol use) or Bipolar (bipolar syndrome) to 'General Well-being' or 'Other' using the tool you have."\
""" **Tool Usage:**
If the confidence score from the tool's result is greater than 0.5, only then classify the query as the condition returned from the tool.
Otherwise, classify the query based on your own knowledge.
If the tool's classification is deemed unreliable (score <= 0.5), analyze the text manually based on your understanding of mental health conditions and identify relevant questionnaires:
- **Depression:** PHQ-9
- **Anxiety:** GAD-7
- **Substance Abuse:** DAST-10
- **Alcohol Use:** AUDIT
- **Bipolar Syndrome:** Bipolar Disorder Assessment
- **General Well-being:** Other mental health concerns
""",
tools=[mental_condition_classifier_tool]
)
data_retriever_agent = create_agent(
"User Profile Data Retriever",
"Retrieve user profile details using the provided user profile ID. Use the data retrieval tool to fetch the user profile.",
"You are responsible for fetching the user profile from the database if the user exits in the session. If the user is anonymous, then use the default user profile.",
tools=[data_retriever_tool]
)
rag_agent = create_agent(
"Knowledge Base Manager & Query Refiner",
"Interpret user queries, formulate specific search terms, and manage/query the mental health knowledge base using RAG.'",
"You are responsible for intelligently understanding user needs, even from vague inputs. "\
"You will formulate precise search queries or identify relevant mental health keywords "\
"before efficiently retrieving relevant information from the vector database. "\
"You ensure that the knowledge base is always up-to-date and accessible for generating "\
"informed recommendations, and that relevant information is always found, even for general queries.",
tools=[query_vector_store] # This tool performs PostgreSQL vector search
)
recommendation_agent = create_agent(
"Personalized Recommendation Generator",
"Provide tailored mental health recommendations based on all gathered information, including questionnaire interpretation.",
"You are a compassionate and knowledgeable AI dedicated to offering "\
"actionable and personalized advice. You synthesize user queries, "\
"profile data, assessment answers, and the interpretation from assessments "\
"to deliver helpful recommendations, including suggesting professional help when appropriate.",
tools=[mental_health_tools.get_bhutanese_helplines],
reasoning=True
)
# ======================= TASKS =======================
crisis_detection_task = Task(
description="Analyze the user's current query: '{user_query}' to determine if it indicates a mental health crisis or emergency."\
"Use the crisis detection tool to analyze the text. "\
"Look for indicators such as: suicidal ideation, self-harm, immediate danger, severe distress, emergency situations. ",
expected_output="Strict JSON with keys is_crisis (bool) and explanation (string). No markdown, no commentary.",
output_json=CrisisDetectionOutput,
input_variables=["user_query"],
agent=crisis_detection_agent
)
mental_condition_classification_task = Task(
description="Analyze the user's query '{user_query}' and user profile '{user_profile}' to classify their mental health condition.",
expected_output="Strict JSON with keys condition (string) and rationale fields (string).",
output_json=MentalConditionOutput,
input_variables=["user_query", "user_profile"],
agent=mental_condition_classifier_agent
)
data_retriever_task = Task(
description="Fetch user profile data in structured JSON."\
"Use Data Retrieval tool to retrieve the user profile information with input as '{user_profile_id}'.",
expected_output="User demographic and background profile as Strict JSON.",
input_variables=["user_query", "user_profile_id"],
output_json = DataRetrievalOutput,
agent=data_retriever_agent
)
rag_task = Task(
description=dedent("""
Retrieve top 3 relevant documents for the query: '{user_query}' and condition: '{classified_condition}'
Guidelines:
1. Analyze the '{user_query}'. If it is general or vague (e.g., 'I'm feeling down', 'I need some advice'),
use your intelligence to formulate a more specific query or identify potential mental health keywords
(e.g., 'stress', 'anxiety', 'depression', 'general well-being') that reflect the user's potential
underlying condition. Prioritize keywords present in the vector database's . If the query is already specific, use it directly.
2. The output should be relevant information blocks from the knowledge base.
based on the refined query.
"""),
expected_output="A JSON object with a list of relevant texts under key 'docs'",
input_variables=["user_query", "classified_condition"],
agent=rag_agent
)
recommendation_task = Task(
description=dedent("""
Generate comprehensive, personalized mental health recommendations based on all available information:
- User query: '{user_query}'
- User profile: '{user_profile}'
- Identified condition: '{classified_condition}'
- Assessment results: '{assessment_answers}' with interpretation: '{interpretation}'
- Crisis status: '{is_crisis}'
Guidelines:
1. Provide culturally sensitive recommendations aligned with Bhutanese values and Gross National Happiness principles.
2. Include actionable, practical steps the user can take.
3. Consider the user's specific profile (age, background, history).
4. Summarize the retrieved documents in your context.
4. Use this summary to support your recommendation. Reference specific sources used from your context'.
6. If assessment was completed, incorporate the interpretation. DO NOT reveal the assessment results to the user.
7. For crisis situations, prioritize immediate safety and professional help.
8. Use compassionate, encouraging language.
9. Suggest community resources, traditional practices, and professional help as appropriate.
10. Only provide helplines when specifically needed for crisis situations.
Structure your response as a comprehensive recommendation that addresses the user's specific needs.
"""),
expected_output="A comprehensive, personalized, and empathetic mental health recommendation tailored to the user's specific situation.",
agent=recommendation_agent,
context=[rag_task],
output_json=RecommendationResult,
input_variables=["user_query", "user_profile","classified_condition", "assessment_answers", "interpretation", "is_crisis"],
)
# ======================= CREWS =======================
crisis_management_crew = Crew(agents=[crisis_detection_agent], tasks=[crisis_detection_task], verbose=True)
mental_condition_crew = Crew(agents=[mental_condition_classifier_agent], tasks=[mental_condition_classification_task], verbose=True)
data_retrieval_crew = Crew(agents=[data_retriever_agent], tasks=[data_retriever_task], verbose=True)
recommendation_crew = Crew(agents=[rag_agent, recommendation_agent], tasks=[rag_task, recommendation_task], full_output=True, output_log_file=True, verbose=True)
# ======================= EXPORTABLE API =======================
def run_crisis_check(user_query: str) -> dict:
result = crisis_management_crew.kickoff({"user_query": user_query})
return result.json_dict
def run_condition_classification(user_query: str, user_profile: str) -> dict:
condition_result = mental_condition_crew.kickoff({
"user_query": user_query,
"user_profile": user_profile
})
return condition_result.json_dict
def run_user_profile_retrieval(user_query: str, user_profile_id: str) -> dict:
data_result = data_retrieval_crew.kickoff({
"user_query": user_query,
"user_profile_id": user_profile_id
})
return data_result.json_dict
def run_recommendations(user_query: str, user_profile: str, condition: str, answers: str, interpretation: str, is_crisis: str):
recommendation_result = recommendation_crew.kickoff({
"user_query": user_query,
"user_profile": user_profile,
"classified_condition": condition,
"assessment_answers": answers,
"interpretation": interpretation,
"is_crisis": is_crisis
})
return recommendation_result.json_dict
# ======================= FULL CHAT FLOW =======================
# @traceable(name= "Druckare Chatbot full flow")
def full_chat_flow(user_query: str, user_id: str = "anon_user"):
print("π Fetching user profile...")
dummy_profile = {
"id": user_id,
"age": "",
"location": "",
"history": "",
"preferences": "Prefers meditation"
}
print("π Checking for crisis...")
crisis_result = run_crisis_check(user_query)
print("π¦ Crew result:", crisis_result)
is_crisis = crisis_result.get("is_crisis", False)
explanation = crisis_result.get("explanation", "")
if is_crisis:
print(f"π¨ Crisis Detected: {explanation}")
rec = run_recommendations(
user_query,
user_profile=json.dumps(dummy_profile),
condition="Crisis",
answers="{}",
interpretation="N/A",
is_crisis="true"
)
# task_outputs = rec.tasks_output
# retrieved_docs_crisis = task_outputs[0]
print("\nπ Crisis Support Recommendation:\n", rec)
return {
"recommendation": rec["recommendation"],
"score_interpretation": interpretation,
"condition": condition,
"is_crisis": is_crisis,
"crisis_explanation": explanation,
# "retrieved_docs": retrieved_docs_crisis
}
else:
print("No crisis detected")
print("π Classifying condition...")
condition_result = run_condition_classification(user_query, json.dumps(dummy_profile))
condition = condition_result.get("condition").lower()
questionnaire_name = config["CONDITION_TO_QUESTIONNAIRE"].get(condition)
print(f"π§ Detected condition: {condition}")
if questionnaire_name not in QUESTIONS:
print("Skipping assessment as condition is general or unknown.")
score = "N/A"
answers = {}
interpretation = "Not applicable"
else:
# Ask for user confirmation
confirm = input(f"π We recommend a brief '{questionnaire_name}' assessment (e.g., {condition.upper()} questionnaire). Do you want to proceed? (yes/no): ").strip().lower()
if confirm != 'yes':
print("π« Assessment skipped by user.")
score = 'N/A'
answers = {}
interpretation = "User chose not to proceed with the assessment."
else:
# Show instructions
print("\nπ Instructions:")
print("You will now be presented with a few questions related to your mental health condition.")
if questionnaire_name in ["PHQ-9", "GAD-7"]:
print("Please answer each question honestly, based on how you've felt over the **last 2 weeks**.")
print("Use the following scale to respond:")
print(" 0 - Not at all")
print(" 1 - Several days")
print(" 2 - More than half the days")
print(" 3 - Nearly every day")
elif questionnaire_name == "DAST-10":
print("Answer each question with Yes or No based on your past year's experience.")
elif questionnaire_name == "AUDIT":
print("Answer using options like: Never, 1-2, 3-4, Weekly, Yes, No, etc., as applicable.")
elif questionnaire_name == "Bipolar":
print("Answer each question with Yes or No based on your past mood and energy patterns.")
input("\nPress Enter to begin the questionnaire...")
# Proceed with assessment
assessment = conduct_assessment(questionnaire_name)
answers = assessment["answers"]
score = assessment["score"]
interpretation = assessment["interpretation"]
print("π‘ Generating recommendations...")
final_rec = run_recommendations(
user_query,
json.dumps(dummy_profile),
condition,
json.dumps(answers),
interpretation,
is_crisis="false"
)
# task_outputs = final_rec.tasks_output
# retrieved_docs = task_outputs[0]
return {
"recommendation": final_rec["recommendation"],
"score_interpretation": interpretation,
"condition": condition,
"is_crisis": is_crisis,
"crisis_explanation": explanation,
# "retrieved_docs": retrieved_docs
}
if __name__ == "__main__":
query = input("π€ Enter your mental health query: ")
final_output = full_chat_flow(query)
print("Final Output:\n", final_output)
|