File size: 5,997 Bytes
576bfa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bcc2c
576bfa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698c79c
576bfa7
 
 
 
 
 
 
 
 
2015ff1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
import torch
import json
import numpy as np
import os
from datetime import datetime
from model import Image2Phoneme
from utils import ctc_post_process, audio_to_mel, mel_to_image, text_to_phonemes
import soundfile as sf
import shutil
import time

# Configuration
DEVICE = torch.device("cpu")
PHMAP = "phoneme_to_id.json"
AUDIO_DIR = "audio_inputs"

# Ensure audio directory exists
os.makedirs(AUDIO_DIR, exist_ok=True)

# Load phoneme vocabulary
try:
    vocab = json.load(open(PHMAP, "r"))
    id_to_ph = {v: k for k, v in vocab.items()}
except FileNotFoundError:
    raise FileNotFoundError(f"Phoneme mapping file not found at {PHMAP}")

# Build model
vocab_size = max(vocab.values()) + 1
model = Image2Phoneme(vocab_size=vocab_size).to(DEVICE)
try:
    ckpt = torch.load("last_checkpoint.pt", map_location=DEVICE, weights_only=True)
    model.load_state_dict(ckpt["model_state_dict"])
    model.eval()
except FileNotFoundError:
    raise FileNotFoundError(f"Checkpoint file not found at last_checkpoint.pt")

def process_audio(audio_input):
    """Process audio to predict phonemes and display mel spectrogram."""
    try:
        print(f"Received audio_input before processing: {audio_input}")
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        audio_path = os.path.join(AUDIO_DIR, f"input_{timestamp}.wav")

        if audio_input is None:
            print("Audio input is None")
            return {"error": "No audio input provided"}, None, None, None
        
        if isinstance(audio_input, str):
            print(f"Processing uploaded file: {audio_input}")
            if not os.path.exists(audio_input):
                return {"error": f"Uploaded file not found: {audio_input}"}, None, None, None
            if audio_input.endswith(".mp3"):
                print("Converting .mp3 to .wav")
                from pydub import AudioSegment
                audio = AudioSegment.from_mp3(audio_input)
                audio_path = audio_path.replace(".wav", "_converted.wav")
                audio.export(audio_path, format="wav")
                print(f"Converted file saved to: {audio_path}")
            else:
                shutil.copy(audio_input, audio_path)
                print(f"Copied file to: {audio_path}")
        else:
            raise ValueError("Microphone input not supported in this configuration")

        mel_path = audio_to_mel(audio_path)
        print(f"Generated mel spectrogram: {mel_path}")
        if not os.path.exists(mel_path):
            return {"error": f"Mel spectrogram file not found: {mel_path}"}, None, None, None
        
        mel_image_path = mel_to_image(mel_path)
        print(f"Generated mel spectrogram image: {mel_image_path}")
        if not os.path.exists(mel_image_path):
            return {"error": f"Mel spectrogram image not found: {mel_image_path}"}, None, None, None
        
        mel = np.load(mel_path)
        print(f"Loaded mel spectrogram shape: {mel.shape}")
        mel_tensor = torch.tensor(mel).unsqueeze(0).to(DEVICE)
        mel_lens = torch.tensor([mel.shape[1]]).to(DEVICE)

        with torch.no_grad():
            ph_pred = model(mel_tensor)
            ph_ids = ph_pred.argmax(-1)[0].cpu().numpy()
            print(f"Predicted phoneme IDs: {ph_ids}")

        ph_seq = [id_to_ph[i] for i in ph_ids if i > 0]
        print(f"Raw phonemes: {ph_seq}")

        post_processed = ctc_post_process(ph_seq)
        print(f"Post-processed phonemes: {post_processed}")

        return {
            "audio_path": audio_path,
            "phonemes": " ".join(ph_seq),
            "post_processed_phonemes": " ".join(post_processed)
        }, mel_image_path, " ".join(ph_seq), " ".join(post_processed)
    except Exception as e:
        print(f"Error in process_audio: {str(e)}")
        return {"error": f"Processing failed: {str(e)}"}, None, None, None

# Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Speech to Phonemes Converter")
    gr.Markdown("Upload audio to predict phonemes and display mel spectrogram. Enter text to convert to phonemes.")

    audio_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio (.wav or .mp3)", interactive=True)
    text_input = gr.Textbox(label="Enter Text", placeholder="Type a sentence to convert to phonemes")
    process_button = gr.Button("Process")

    audio_path_output = gr.Textbox(label="Audio Path")
    mel_image = gr.Image(label="Mel Spectrogram", type="filepath")
    raw_phonemes_audio = gr.Textbox(label="Raw Phonemes (Audio)")
    post_processed_phonemes_audio = gr.Textbox(label="Post-Processed Phonemes (Audio)")
    text_phonemes_output = gr.Textbox(label="Phonemes (Text)")

    def process(audio_input, text_input):
        print(f"Processing inputs - Audio: {audio_input}, Text: {text_input}")
        if audio_input:
            audio_result, mel_image_path, raw_ph_audio, post_ph_audio = process_audio(audio_input)
            audio_path = audio_result.get("audio_path", "")
            raw_ph_audio = audio_result.get("phonemes", "")
            post_ph_audio = audio_result.get("post_processed_phonemes", "")
            error_msg = audio_result.get("error", "")
            if error_msg:
                audio_path = error_msg
                raw_ph_audio = ""
                post_ph_audio = ""
                mel_image_path = None
        else:
            audio_path = ""
            raw_ph_audio = ""
            post_ph_audio = ""
            mel_image_path = None
        text_result = text_to_phonemes(text_input) if text_input and text_input.strip() else {}
        text_phonemes = "".join(text_result)
        return audio_path, mel_image_path, raw_ph_audio, post_ph_audio, text_phonemes

    process_button.click(
        fn=process,
        inputs=[audio_input, text_input],
        outputs=[audio_path_output, mel_image, raw_phonemes_audio, post_processed_phonemes_audio, text_phonemes_output]
    )

if __name__ == "__main__":
    iface.launch(debug=True)