Spaces:
Sleeping
Sleeping
File size: 5,636 Bytes
c871a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import chess.svg
import chess
import re
import cv2
import random as rd
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import load_model
import chess, chess.svg
from pathlib import Path
import webbrowser
piece_symbols = 'prbnkqPRBNKQ-'
try:
model = load_model('./chess_model.h5')
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
def onehot_from_fen(fen):
eye = np.eye(13)
output = np.empty((0, 13))
fen = re.sub('[-]', '', fen)
for char in fen:
if(char in '12345678'):
output = np.append(output, np.tile(eye[12], (int(char), 1)), axis=0)
else:
idx = piece_symbols.index(char)
output = np.append(output, eye[idx].reshape((1, 13)), axis=0)
return output
import numpy as np
import re
def board_from_fen(fen):
board = []
fen = fen.split()[0] # just the board part (ignore turn, castling, etc.)
for row in fen.split('/'):
row_out = []
for char in row:
if char.isdigit():
# expand empty squares
row_out.extend([0] * int(char))
else:
idx = piece_symbols.index(char) + 1 # +1 so 0 = empty
row_out.append(idx)
board.append(row_out)
return np.array(board, dtype=np.int8) # shape (8,8)
def fen_from_onehot(one_hot):
output = ''
for j in range(8):
for i in range(8):
if(one_hot[j][i] == 12):
output += ' '
else:
output += piece_symbols[one_hot[j][i]]
if(j != 7):
output += '-'
for i in range(8, 0, -1):
output = output.replace(' ' * i, str(i))
return output
def order_points(pts):
# Order 4 points: top-left, top-right, bottom-right, bottom-left
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def preprocess_chessboard(image_path, target_size=(30, 30)):
img = cv2.imread(image_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
edges = cv2.Canny(blur, 50, 150)
# Find contours
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cropped_board = None
warped = None
squares = []
if contours:
cnt = max(contours, key=cv2.contourArea)
epsilon = 0.02 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
# If we found 4 corners, warp
if len(approx) == 4:
pts = approx.reshape(4,2)
rect = order_points(pts)
board_size = 256 # fixed square board
dst = np.array([
[0, 0],
[board_size-1, 0],
[board_size-1, board_size-1],
[0, board_size-1]
], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(img, M, (board_size, board_size))
cropped_board = warped
else:
# fallback: just resize whole image
warped = cv2.resize(img, (256, 256))
cropped_board = warped
else:
# no contours, fallback
warped = cv2.resize(img, (256, 256))
cropped_board = warped
# Split into 64 squares
board_size = warped.shape[0]
sq_size = board_size // 8
for row in range(8):
for col in range(8):
square = warped[row*sq_size:(row+1)*sq_size,
col*sq_size:(col+1)*sq_size]
square = cv2.resize(square, target_size)
square = square / 255.0
squares.append(square)
return np.array(squares), cropped_board
def display_with_predicted_fen(image):
squares,_ = preprocess_chessboard(image)
pred = model.predict(squares).argmax(axis=1).reshape(8, 8)
fen = fen_from_onehot(pred)
return fen
def get_board_from_image(img_path):
image = cv2.imread(img_path)
if image is None:
print('sorry image is null')
return
ext = img_path.split('.')[-1]
if not (ext=='jpg' or ext == 'jpeg' or ext == 'png'):
print('sorry image needs to be in jpg/jpeg/png format')
return
predicted_fen = display_with_predicted_fen(img_path)
# Create board from predicted FEN
board = chess.Board(predicted_fen.replace('-','/'))
return predicted_fen
def get_board_from_fen(fen:str):
print(type(fen))
fen=fen.split('-')
if len(fen)!=8:
return [[]]
answers = [[] for _ in range(8)]
map={'p':'bp','r':'bR','n':'bN','k':'bK','q':'bQ','b':'bB','P':'wp','R':'wR','N':'wN','K':'wK','Q':'wQ','B':'wB'}
for i,f in enumerate(fen):
for char in f:
if char in '12345678':
answers[i].extend(['--']*(int(char)))
elif char in piece_symbols:
answers[i].append(map[char])
return answers
def get_board(image_path):
fen_notation = get_board_from_image(image_path)
if fen_notation:
board = get_board_from_fen(fen_notation)
else:
return [[]],""
return board,fen_notation.replace('-','/')
if __name__ == "__main__":
get_board()
|