Spaces:
Sleeping
Sleeping
File size: 15,960 Bytes
c871a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import random
piece_score = {'K': 1000, 'Q': 900, 'R': 500, 'B': 330, 'N': 320, 'p': 100,'--':0,'-':0}
CHECKMATE = 100000
STALEMATE = 0
DEPTH = 3
# Pawn (p = 100)
pawn_table = [
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 5, 10, 10,-20,-20, 10, 10, 5],
[ 5, -5,-10, 0, 0,-10, -5, 5],
[ 0, 0, 0, 20, 20, 0, 0, 0],
[ 5, 5, 10, 25, 25, 10, 5, 5],
[ 10, 10, 20, 30, 30, 20, 10, 10],
[ 50, 50, 50, 50, 50, 50, 50, 50],
[ 0, 0, 0, 0, 0, 0, 0, 0]
]
# Knight (N = 320)
knight_table = [
[-50,-40,-30,-30,-30,-30,-40,-50],
[-40,-20, 0, 0, 0, 0,-20,-40],
[-30, 0, 10, 15, 15, 10, 0,-30],
[-30, 5, 15, 20, 20, 15, 5,-30],
[-30, 0, 15, 20, 20, 15, 0,-30],
[-30, 5, 10, 15, 15, 10, 5,-30],
[-40,-20, 0, 5, 5, 0,-20,-40],
[-50,-40,-30,-30,-30,-30,-40,-50]
]
# Bishop (B = 330)
bishop_table = [
[-20,-10,-10,-10,-10,-10,-10,-20],
[-10, 5, 0, 0, 0, 0, 5,-10],
[-10, 10, 10, 10, 10, 10, 10,-10],
[-10, 0, 10, 10, 10, 10, 0,-10],
[-10, 5, 5, 10, 10, 5, 5,-10],
[-10, 0, 5, 10, 10, 5, 0,-10],
[-10, 0, 0, 0, 0, 0, 0,-10],
[-20,-10,-10,-10,-10,-10,-10,-20]
]
# Rook (R = 500)
rook_table = [
[ 0, 0, 0, 0, 0, 0, 0, 0],
[ 5, 10, 10, 10, 10, 10, 10, 5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ -5, 0, 0, 0, 0, 0, 0, -5],
[ 0, 0, 0, 5, 5, 0, 0, 0]
]
# Queen (Q = 900)
queen_table = [
[-20,-10,-10, -5, -5,-10,-10,-20],
[-10, 0, 0, 0, 0, 5, 0,-10],
[-10, 0, 5, 5, 5, 5, 5,-10],
[ -5, 0, 5, 5, 5, 5, 0, -5],
[ 0, 0, 5, 5, 5, 5, 0, -5],
[-10, 5, 5, 5, 5, 5, 0,-10],
[-10, 0, 5, 0, 0, 0, 0,-10],
[-20,-10,-10, -5, -5,-10,-10,-20]
]
# King (K = 1000) β Middlegame
king_table_mid = [
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-30,-40,-40,-50,-50,-40,-40,-30],
[-20,-30,-30,-40,-40,-30,-30,-20],
[-10,-20,-20,-20,-20,-20,-20,-10],
[ 20, 20, 0, 0, 0, 0, 20, 20],
[ 20, 30, 10, 0, 0, 10, 30, 20]
]
# King (K = 1000) β Endgame
king_table_end = [
[-50,-40,-30,-20,-20,-30,-40,-50],
[-30,-20,-10, 0, 0,-10,-20,-30],
[-30,-10, 20, 30, 30, 20,-10,-30],
[-30,-10, 30, 40, 40, 30,-10,-30],
[-30,-10, 30, 40, 40, 30,-10,-30],
[-30,-10, 20, 30, 30, 20,-10,-30],
[-30,-30, 0, 0, 0, 0,-30,-30],
[-50,-30,-30,-30,-30,-30,-30,-50]
]
king_scores = [[0]*8 for _ in range(8)]
for r in range(8):
for c in range(8):
king_scores[r][c]= king_table_end[r][c]+ king_table_end[r][c]
for r in range(4):
for c in range(8):
pawn_table[r][c],pawn_table[7-r][c]=pawn_table[r][c],pawn_table[7-r][c]
peice_position_scores = {'N':knight_table,'K':king_scores,'N':knight_table,'B':bishop_table,'Q':queen_table,'p':pawn_table,'R':rook_table}
'''
use openings
use numpy and better board representation
better use p.q or something like that
transposition tables
save the evaluation zobra hash
add which moves it is stoping
add attacking and defensive
we can teach end game theory
if apeice is attacked try to move that first
storing the data of moves not to recalculate
'''
def random_move(valid_moves):
ind=random.randint(0,len(valid_moves)-1)
return valid_moves[ind]
## checking for greedy
# for all moves check where i can have more peices/value
#but we also need to score_material the next move so that the best possible comes out
#greedy algorithim and try to get better position
#score material on board
#assume black playing ai and check mate is worst
# go for level 2
# we want to minize the maximum of opponent score
def find_best_move_non_recursion(gs,valid_moves):
turn = 1 if gs.whiteToMove else -1
opponent_min_max_score= CHECKMATE #smallest of their maximums
best_player_move = None
random.shuffle(valid_moves)
for player_move in valid_moves:
gs.make_move(player_move)
opponent_moves = gs.get_valid_moves()
if gs.check_mate:
opponent_max_score = -CHECKMATE
elif gs.steale_mate:
opponent_max_score=STALEMATE
else:
opponent_max_score = -CHECKMATE
random.shuffle(opponent_moves)
for opponent_move in opponent_moves:
gs.make_move(opponent_move)
gs.get_valid_move()
if gs.check_mate:
score = CHECKMATE
elif gs.steale_mate:
score=STALEMATE
else:
score = -turn * score_material(gs.board)
if (score>opponent_max_score):
opponent_max_score=score # try to find best move for opponent
gs.undo_move()
if opponent_min_max_score> opponent_max_score:
opponent_min_max_score = opponent_max_score # try to find best move for u which is worst(best) move
best_move = player_move # my new best is least of all opponent bests
gs.undo_move()
return best_move
# solve this recursively
# prune the branches we do not need
'''
helper method for best method
'''
def find_best_move(gs, valid_moves, return_queue):
global count, best_moves
count = 0
score = find_move_nega_max_alpha_beta(
gs, gs.get_valid_moves(), DEPTH, -2*CHECKMATE, 2*CHECKMATE, 1
)
print("Top moves:")
for score, mv in best_moves:
print(mv.get_chess_notation(), "score:", score)
# pick a random move among top N
chosen_move = random.choice(best_moves)[1]
return_queue.put(chosen_move)
'''
find min max move
'''
def find_move_min_max(gs,valid_moves,depth,whiteToMove):
global next_move
if depth == 0 :
return score_material(gs)
if whiteToMove: #maximize score
max_score = - CHECKMATE
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = find_move_min_max(gs,next_moves,depth-1,False)
if score>max_score:
max_score=score
if depth == DEPTH :
next_move = move
gs.undo_move()
return max_score
else:
min_score = CHECKMATE
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = find_move_min_max(gs,next_moves,depth-1,True)
if score<min_score:
min_score=score
if depth == DEPTH :
next_move = move
gs.undo_move()
return min_score
'''
combine if else to one
'''
def find_move_nega_max(gs,valid_moves,depth,turn):
#always try to maximize but with multilier
global next_move,count
count +=1
if depth == 0 :
return turn * score_material(gs)
max_score = CHECKMATE
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = -find_move_nega_max(gs,next_moves,depth-1,-1 * turn) #this is very important
if score>max_score:
max_score=score
if depth == DEPTH :
next_move = move
gs.undo_move()
return max_score
'''
the alpha beta pruning
remove branches that wont make any good
also depends on scoring algorithim
also add positional scores
need to control more squares and attack more squares
alpha beta these are the maximum and minimum u can acheive values overall
if max_score>alpha then max_score is alpha
if alpha>beta then prune that branch
ugot best else where no need for it
'''
# Killer moves: 2 per depth (ply)
killer_moves = {}
# History heuristic: success count
history_heuristic = {
'w': [[0 for _ in range(8)] for _ in range(8)],
'b': [[0 for _ in range(8)] for _ in range(8)]
}
def order_moves(gs, moves):
scored_moves = []
for move in moves:
score=0
score -= score_material(gs)
# 1. Captures (MVV-LVA style)
if move.is_capture:
attacker = move.peice_moved[1]
victim = move.peice_captured[1] if move.peice_captured[1]!='-' else '--'
score += ( piece_score.get(victim, 0))*10 - piece_score.get(attacker, 0)
# 2. Checks (simulate move and test)
gs.make_move(move)
if gs.incheck:
score += 80
gs.undo_move()
# 3. Promotions
if move.is_pawn_promotion:
score += 150 + piece_score['Q']*10
# 4. Castling (good for king safety)
if move.castle:
score += 50
# 5.
for dr, dc in [(-1,0),(1,0),(0,-1),(0,1),(-1,-1),(1,1),(-1,1),(1,-1)]:
rr, cc = move.end_row + dr, move.end_col + dc
if 0 <= rr < 8 and 0 <= cc < 8:
piece = gs.board[rr][cc]
if piece != "--" and piece[0] == move.peice_moved[0]: # same color
score += 1
score += score_material(gs)
scored_moves.append((score, move))
# Sort by score descending
scored_moves.sort(key=lambda x: x[0], reverse=True)
return [m for _, m in scored_moves]
# def find_move_nega_max_alpha_beta(gs, valid_moves, depth, alpha, beta, turn):
# global count, next_move
# count += 1 # counts all nodes visited
# if depth == 0:
# return turn * score_material(gs)
# max_score = -CHECKMATE
# valid_moves=order_moves(gs,valid_moves)
# for move in valid_moves:
# gs.make_move(move)
# next_moves = gs.get_valid_moves()
# score = -find_move_nega_max_alpha_beta(
# gs, next_moves, depth - 1, -beta, -alpha, -turn
# )
# gs.undo_move()
# if score > max_score:
# max_score = score
# if depth == DEPTH:
# next_move = move
# alpha = max(alpha, max_score)
# if alpha >= beta:
# break
# return max_score
TOP_N = 5 # number of best moves you want
def find_move_nega_max_alpha_beta(gs, valid_moves, depth, alpha, beta, turn):
if depth == 0:
return turn * score_material(gs)
max_score = -CHECKMATE
scored_moves = []
# move ordering to improve pruning
valid_moves = order_moves(gs, valid_moves)
for move in valid_moves:
gs.make_move(move)
next_moves = gs.get_valid_moves()
score = -find_move_nega_max_alpha_beta(
gs, next_moves, depth - 1, -beta, -alpha, -turn
)
gs.undo_move()
scored_moves.append((score, move))
max_score = max(max_score, score)
alpha = max(alpha, max_score)
if alpha >= beta:
break # alpha-beta cutoff
# Only save best moves at root depth
if depth == DEPTH:
scored_moves.sort(key=lambda x: x[0], reverse=True)
best_moves = [(score, move) for score, move in scored_moves[:TOP_N]]
return max_score
'''
score the board
positive score good for white
a negative score good for black
increase the scoring function
counting attacking and defending moves
'''
def score_material(self):
"""Full evaluation of the board with material, positional, mobility, defense, etc."""
if self.check_mate:
if self.whiteToMove:
return -CHECKMATE
else:
return CHECKMATE
elif self.steale_mate:
return STALEMATE
board = self.board
score = 0
white_squares_controlled = set()
black_squares_controlled = set()
# Material, piece-square, and piece defense evaluation
for r in range(8):
for c in range(8):
square = (r, c)
piece_info = board[r][c]
if piece_info == "--":
continue
color, piece = piece_info[0], piece_info[1]
base_value = piece_score[piece]
if color == 'w':
# Material value
score += base_value
score += peice_position_scores[piece][r][c]
#
moves = self.move_functions[piece](r,c,[])
for move in moves:
white_squares_controlled.add((move.end_row, move.end_col))
# Bonus for defending own piece
if board[move.end_row][move.end_col][0] == 'w':
defended_piece = board[move.end_row][move.end_col][1]
score += piece_score[defended_piece]
# Bonus for killing enemy valuable piece
if board[move.end_row][move.end_col][0] == 'b':
victim = board[move.end_row][move.end_col][1]
score += piece_score[victim] *10
elif color == 'b':
score -= base_value
score -= peice_position_scores[piece][7 - r][c]
moves = self.move_functions[piece](r,c,[])
for move in moves:
black_squares_controlled.add((move.end_row, move.end_col))
# Defense bonus
if board[move.end_row][move.end_col][0] == 'b':
defended_piece = board[move.end_row][move.end_col][1]
score -= piece_score[defended_piece]
# Killing enemy valuable piece
if board[move.end_row][move.end_col][0] == 'w':
victim = board[move.end_row][move.end_col][1]
score -= piece_score[victim] *10
# Bishop pair bonus
white_bishops = sum(1 for r in range(8) for c in range(8) if board[r][c] == 'wB')
black_bishops = sum(1 for r in range(8) for c in range(8) if board[r][c] == 'bB')
if white_bishops >= 2:
score += 50
if black_bishops >= 2:
score -= 50
# King safety (penalize exposed kings)
score += self.king_safety( "w") - self.king_safety("b")
score += (len(white_squares_controlled) - len(black_squares_controlled))*5
return score
def get_best_n_moves(gs, n=5):
"""
Returns best n moves for both White and Black.
"""
best_white, best_black = [], []
# White to move
if gs.whiteToMove:
moves = gs.get_valid_moves()
scored = []
for move in moves:
gs.make_move(move)
score = -find_move_nega_max_alpha_beta(
gs, gs.get_valid_moves(), DEPTH - 1, -CHECKMATE, CHECKMATE, -1
)
gs.undo_move()
scored.append((score, str(move)))
scored.sort(key=lambda x: x[0], reverse=True)
best_white = scored[:n]
# Black to move
else:
moves = gs.get_valid_moves()
scored = []
for move in moves:
gs.make_move(move)
score = -find_move_nega_max_alpha_beta(
gs, gs.get_valid_moves(), DEPTH - 1, -CHECKMATE, CHECKMATE, 1
)
gs.undo_move()
scored.append((score, str(move)))
scored.sort(key=lambda x: x[0], reverse=True)
best_black = scored[:n]
return best_white if best_white else best_black
|