import random piece_score = {'K': 1000, 'Q': 900, 'R': 500, 'B': 330, 'N': 320, 'p': 100,'--':0,'-':0} CHECKMATE = 100000 STALEMATE = 0 DEPTH = 3 # Pawn (p = 100) pawn_table = [ [ 0, 0, 0, 0, 0, 0, 0, 0], [ 5, 10, 10,-20,-20, 10, 10, 5], [ 5, -5,-10, 0, 0,-10, -5, 5], [ 0, 0, 0, 20, 20, 0, 0, 0], [ 5, 5, 10, 25, 25, 10, 5, 5], [ 10, 10, 20, 30, 30, 20, 10, 10], [ 50, 50, 50, 50, 50, 50, 50, 50], [ 0, 0, 0, 0, 0, 0, 0, 0] ] # Knight (N = 320) knight_table = [ [-50,-40,-30,-30,-30,-30,-40,-50], [-40,-20, 0, 0, 0, 0,-20,-40], [-30, 0, 10, 15, 15, 10, 0,-30], [-30, 5, 15, 20, 20, 15, 5,-30], [-30, 0, 15, 20, 20, 15, 0,-30], [-30, 5, 10, 15, 15, 10, 5,-30], [-40,-20, 0, 5, 5, 0,-20,-40], [-50,-40,-30,-30,-30,-30,-40,-50] ] # Bishop (B = 330) bishop_table = [ [-20,-10,-10,-10,-10,-10,-10,-20], [-10, 5, 0, 0, 0, 0, 5,-10], [-10, 10, 10, 10, 10, 10, 10,-10], [-10, 0, 10, 10, 10, 10, 0,-10], [-10, 5, 5, 10, 10, 5, 5,-10], [-10, 0, 5, 10, 10, 5, 0,-10], [-10, 0, 0, 0, 0, 0, 0,-10], [-20,-10,-10,-10,-10,-10,-10,-20] ] # Rook (R = 500) rook_table = [ [ 0, 0, 0, 0, 0, 0, 0, 0], [ 5, 10, 10, 10, 10, 10, 10, 5], [ -5, 0, 0, 0, 0, 0, 0, -5], [ -5, 0, 0, 0, 0, 0, 0, -5], [ -5, 0, 0, 0, 0, 0, 0, -5], [ -5, 0, 0, 0, 0, 0, 0, -5], [ -5, 0, 0, 0, 0, 0, 0, -5], [ 0, 0, 0, 5, 5, 0, 0, 0] ] # Queen (Q = 900) queen_table = [ [-20,-10,-10, -5, -5,-10,-10,-20], [-10, 0, 0, 0, 0, 5, 0,-10], [-10, 0, 5, 5, 5, 5, 5,-10], [ -5, 0, 5, 5, 5, 5, 0, -5], [ 0, 0, 5, 5, 5, 5, 0, -5], [-10, 5, 5, 5, 5, 5, 0,-10], [-10, 0, 5, 0, 0, 0, 0,-10], [-20,-10,-10, -5, -5,-10,-10,-20] ] # King (K = 1000) – Middlegame king_table_mid = [ [-30,-40,-40,-50,-50,-40,-40,-30], [-30,-40,-40,-50,-50,-40,-40,-30], [-30,-40,-40,-50,-50,-40,-40,-30], [-30,-40,-40,-50,-50,-40,-40,-30], [-20,-30,-30,-40,-40,-30,-30,-20], [-10,-20,-20,-20,-20,-20,-20,-10], [ 20, 20, 0, 0, 0, 0, 20, 20], [ 20, 30, 10, 0, 0, 10, 30, 20] ] # King (K = 1000) – Endgame king_table_end = [ [-50,-40,-30,-20,-20,-30,-40,-50], [-30,-20,-10, 0, 0,-10,-20,-30], [-30,-10, 20, 30, 30, 20,-10,-30], [-30,-10, 30, 40, 40, 30,-10,-30], [-30,-10, 30, 40, 40, 30,-10,-30], [-30,-10, 20, 30, 30, 20,-10,-30], [-30,-30, 0, 0, 0, 0,-30,-30], [-50,-30,-30,-30,-30,-30,-30,-50] ] king_scores = [[0]*8 for _ in range(8)] for r in range(8): for c in range(8): king_scores[r][c]= king_table_end[r][c]+ king_table_end[r][c] for r in range(4): for c in range(8): pawn_table[r][c],pawn_table[7-r][c]=pawn_table[r][c],pawn_table[7-r][c] peice_position_scores = {'N':knight_table,'K':king_scores,'N':knight_table,'B':bishop_table,'Q':queen_table,'p':pawn_table,'R':rook_table} ''' use openings use numpy and better board representation better use p.q or something like that transposition tables save the evaluation zobra hash add which moves it is stoping add attacking and defensive we can teach end game theory if apeice is attacked try to move that first storing the data of moves not to recalculate ''' def random_move(valid_moves): ind=random.randint(0,len(valid_moves)-1) return valid_moves[ind] ## checking for greedy # for all moves check where i can have more peices/value #but we also need to score_material the next move so that the best possible comes out #greedy algorithim and try to get better position #score material on board #assume black playing ai and check mate is worst # go for level 2 # we want to minize the maximum of opponent score def find_best_move_non_recursion(gs,valid_moves): turn = 1 if gs.whiteToMove else -1 opponent_min_max_score= CHECKMATE #smallest of their maximums best_player_move = None random.shuffle(valid_moves) for player_move in valid_moves: gs.make_move(player_move) opponent_moves = gs.get_valid_moves() if gs.check_mate: opponent_max_score = -CHECKMATE elif gs.steale_mate: opponent_max_score=STALEMATE else: opponent_max_score = -CHECKMATE random.shuffle(opponent_moves) for opponent_move in opponent_moves: gs.make_move(opponent_move) gs.get_valid_move() if gs.check_mate: score = CHECKMATE elif gs.steale_mate: score=STALEMATE else: score = -turn * score_material(gs.board) if (score>opponent_max_score): opponent_max_score=score # try to find best move for opponent gs.undo_move() if opponent_min_max_score> opponent_max_score: opponent_min_max_score = opponent_max_score # try to find best move for u which is worst(best) move best_move = player_move # my new best is least of all opponent bests gs.undo_move() return best_move # solve this recursively # prune the branches we do not need ''' helper method for best method ''' def find_best_move(gs, valid_moves, return_queue): global count, best_moves count = 0 score = find_move_nega_max_alpha_beta( gs, gs.get_valid_moves(), DEPTH, -2*CHECKMATE, 2*CHECKMATE, 1 ) print("Top moves:") for score, mv in best_moves: print(mv.get_chess_notation(), "score:", score) # pick a random move among top N chosen_move = random.choice(best_moves)[1] return_queue.put(chosen_move) ''' find min max move ''' def find_move_min_max(gs,valid_moves,depth,whiteToMove): global next_move if depth == 0 : return score_material(gs) if whiteToMove: #maximize score max_score = - CHECKMATE for move in valid_moves: gs.make_move(move) next_moves = gs.get_valid_moves() score = find_move_min_max(gs,next_moves,depth-1,False) if score>max_score: max_score=score if depth == DEPTH : next_move = move gs.undo_move() return max_score else: min_score = CHECKMATE for move in valid_moves: gs.make_move(move) next_moves = gs.get_valid_moves() score = find_move_min_max(gs,next_moves,depth-1,True) if scoremax_score: max_score=score if depth == DEPTH : next_move = move gs.undo_move() return max_score ''' the alpha beta pruning remove branches that wont make any good also depends on scoring algorithim also add positional scores need to control more squares and attack more squares alpha beta these are the maximum and minimum u can acheive values overall if max_score>alpha then max_score is alpha if alpha>beta then prune that branch ugot best else where no need for it ''' # Killer moves: 2 per depth (ply) killer_moves = {} # History heuristic: success count history_heuristic = { 'w': [[0 for _ in range(8)] for _ in range(8)], 'b': [[0 for _ in range(8)] for _ in range(8)] } def order_moves(gs, moves): scored_moves = [] for move in moves: score=0 score -= score_material(gs) # 1. Captures (MVV-LVA style) if move.is_capture: attacker = move.peice_moved[1] victim = move.peice_captured[1] if move.peice_captured[1]!='-' else '--' score += ( piece_score.get(victim, 0))*10 - piece_score.get(attacker, 0) # 2. Checks (simulate move and test) gs.make_move(move) if gs.incheck: score += 80 gs.undo_move() # 3. Promotions if move.is_pawn_promotion: score += 150 + piece_score['Q']*10 # 4. Castling (good for king safety) if move.castle: score += 50 # 5. for dr, dc in [(-1,0),(1,0),(0,-1),(0,1),(-1,-1),(1,1),(-1,1),(1,-1)]: rr, cc = move.end_row + dr, move.end_col + dc if 0 <= rr < 8 and 0 <= cc < 8: piece = gs.board[rr][cc] if piece != "--" and piece[0] == move.peice_moved[0]: # same color score += 1 score += score_material(gs) scored_moves.append((score, move)) # Sort by score descending scored_moves.sort(key=lambda x: x[0], reverse=True) return [m for _, m in scored_moves] # def find_move_nega_max_alpha_beta(gs, valid_moves, depth, alpha, beta, turn): # global count, next_move # count += 1 # counts all nodes visited # if depth == 0: # return turn * score_material(gs) # max_score = -CHECKMATE # valid_moves=order_moves(gs,valid_moves) # for move in valid_moves: # gs.make_move(move) # next_moves = gs.get_valid_moves() # score = -find_move_nega_max_alpha_beta( # gs, next_moves, depth - 1, -beta, -alpha, -turn # ) # gs.undo_move() # if score > max_score: # max_score = score # if depth == DEPTH: # next_move = move # alpha = max(alpha, max_score) # if alpha >= beta: # break # return max_score TOP_N = 5 # number of best moves you want def find_move_nega_max_alpha_beta(gs, valid_moves, depth, alpha, beta, turn): if depth == 0: return turn * score_material(gs) max_score = -CHECKMATE scored_moves = [] # move ordering to improve pruning valid_moves = order_moves(gs, valid_moves) for move in valid_moves: gs.make_move(move) next_moves = gs.get_valid_moves() score = -find_move_nega_max_alpha_beta( gs, next_moves, depth - 1, -beta, -alpha, -turn ) gs.undo_move() scored_moves.append((score, move)) max_score = max(max_score, score) alpha = max(alpha, max_score) if alpha >= beta: break # alpha-beta cutoff # Only save best moves at root depth if depth == DEPTH: scored_moves.sort(key=lambda x: x[0], reverse=True) best_moves = [(score, move) for score, move in scored_moves[:TOP_N]] return max_score ''' score the board positive score good for white a negative score good for black increase the scoring function counting attacking and defending moves ''' def score_material(self): """Full evaluation of the board with material, positional, mobility, defense, etc.""" if self.check_mate: if self.whiteToMove: return -CHECKMATE else: return CHECKMATE elif self.steale_mate: return STALEMATE board = self.board score = 0 white_squares_controlled = set() black_squares_controlled = set() # Material, piece-square, and piece defense evaluation for r in range(8): for c in range(8): square = (r, c) piece_info = board[r][c] if piece_info == "--": continue color, piece = piece_info[0], piece_info[1] base_value = piece_score[piece] if color == 'w': # Material value score += base_value score += peice_position_scores[piece][r][c] # moves = self.move_functions[piece](r,c,[]) for move in moves: white_squares_controlled.add((move.end_row, move.end_col)) # Bonus for defending own piece if board[move.end_row][move.end_col][0] == 'w': defended_piece = board[move.end_row][move.end_col][1] score += piece_score[defended_piece] # Bonus for killing enemy valuable piece if board[move.end_row][move.end_col][0] == 'b': victim = board[move.end_row][move.end_col][1] score += piece_score[victim] *10 elif color == 'b': score -= base_value score -= peice_position_scores[piece][7 - r][c] moves = self.move_functions[piece](r,c,[]) for move in moves: black_squares_controlled.add((move.end_row, move.end_col)) # Defense bonus if board[move.end_row][move.end_col][0] == 'b': defended_piece = board[move.end_row][move.end_col][1] score -= piece_score[defended_piece] # Killing enemy valuable piece if board[move.end_row][move.end_col][0] == 'w': victim = board[move.end_row][move.end_col][1] score -= piece_score[victim] *10 # Bishop pair bonus white_bishops = sum(1 for r in range(8) for c in range(8) if board[r][c] == 'wB') black_bishops = sum(1 for r in range(8) for c in range(8) if board[r][c] == 'bB') if white_bishops >= 2: score += 50 if black_bishops >= 2: score -= 50 # King safety (penalize exposed kings) score += self.king_safety( "w") - self.king_safety("b") score += (len(white_squares_controlled) - len(black_squares_controlled))*5 return score def get_best_n_moves(gs, n=5): """ Returns best n moves for both White and Black. """ best_white, best_black = [], [] # White to move if gs.whiteToMove: moves = gs.get_valid_moves() scored = [] for move in moves: gs.make_move(move) score = -find_move_nega_max_alpha_beta( gs, gs.get_valid_moves(), DEPTH - 1, -CHECKMATE, CHECKMATE, -1 ) gs.undo_move() scored.append((score, str(move))) scored.sort(key=lambda x: x[0], reverse=True) best_white = scored[:n] # Black to move else: moves = gs.get_valid_moves() scored = [] for move in moves: gs.make_move(move) score = -find_move_nega_max_alpha_beta( gs, gs.get_valid_moves(), DEPTH - 1, -CHECKMATE, CHECKMATE, 1 ) gs.undo_move() scored.append((score, str(move))) scored.sort(key=lambda x: x[0], reverse=True) best_black = scored[:n] return best_white if best_white else best_black