Spaces:
Sleeping
Sleeping
File size: 14,046 Bytes
7586e33 0b0f493 7586e33 0b0f493 7586e33 f29098c 7586e33 0b0f493 7586e33 0b0f493 7586e33 0b0f493 7586e33 0b0f493 7586e33 0b0f493 7586e33 0b0f493 7586e33 0b0f493 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import gradio as gr
import tensorflow as tf
import sentencepiece as spm
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_text as tf_text
import os
import random
import tensorflow as tf
import numpy as np
text_pairs=[
("Farmers fear that the elephant will destroy the crops","వర్షాలకు చేతికి వచ్చిన పంట దెబ్బతిన్నదని రైతులు వాపోతున్నారు"),
("The death toll in the state stands at 9,863","దీంతో రాష్ట్రంలో ఇప్పటి వరకు మొత్తం డిశ్చార్జ్ల సంఖ్య 9,15,626కి చేరింది"),
("Koo is available in Hindi, Kannada, Telugu, Tamil, Bengali, Gujarati and Marathi","ప్రశ్నలతో రూపొందించిన వీడియోలు మాత్రం ఆంగ్లం, హిందీ, మరాఠీ, కన్నడ, గుజరాతీ, బెంగాల్ భాషల్లో చూడోచ్చు" ) ,
("How can the court direct the government to do this?","ప్రభుత్వం ఎలా వ్యవహరించి ఉండాల్సింది?" ),
("America is safer today" ,"అమెరికాలో పరిస్థితి రోజురోజుకూ దారుణంగా మారుతోంది" ),
("I don't look into that, to be president" ,"నేను ముఖ్యమంత్రిని కావాలని అనుకోలేదన్నారు" ),
("He had tested positive for coronavirus" ,"కరోనా లక్షణాలు కనిపించడంతో టెస్ట్ చేసుకున్న ఆయనకు పాజిటివ్ గా నిర్దారణ అయ్యింది" ),
("New Delhi: Amid the novel coronavirus situation in the country, locals in Delhi are taking precautionary measures in Delhi","న్యూడిల్లీ: దేశవ్యాప్తంగా కరోనా మహమ్మారి విజృంభిస్తున్న నేపథ్యంలో కేంద్ర ప్రభుత్వం మరింత అప్రమత్తమైంది" ),
("She was rescued yesterday and admitted to a hospital" ,"శనివారం నాడు ఆమె ఆసుపత్రి నుండి డిశ్చార్జ్ అయ్యారు")
]
# -----------------------
# 3. Load SentencePiece models in TensorFlow
# -----------------------
def load_spm(path):
with open(path, "rb") as f:
return f.read()
spm_model_en = load_spm("spm_en.model")
spm_model_te = load_spm("spm_te.model")
tokenizer_en = tf_text.SentencepieceTokenizer(model=spm_model_en)
tokenizer_te = tf_text.SentencepieceTokenizer(model=spm_model_te)
# -----------------------
# 4. Encode text pairs
# -----------------------
sequence_length = 50
def encode_source(texts):
return tokenizer_en.tokenize(texts).to_tensor(shape=(None, sequence_length))
def encode_target(texts):
return tokenizer_te.tokenize(texts).to_tensor(shape=(None, sequence_length + 1))
# Convert a batch of token IDs to strings
# Example: build dataset
english_texts = [pair[0] for pair in text_pairs]
telugu_texts = [pair[1] for pair in text_pairs]
X = encode_source(tf.constant(english_texts))
Y = encode_target(tf.constant(telugu_texts))
import random
for i in range(5):
print(random.choice(text_pairs))
len(text_pairs)
for idx in range(len(text_pairs)):
english ,telugu = text_pairs[i]
spanish = "[start] " + telugu + " [end]"
text_pairs.append((english, telugu))
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim)
self.dense_proj = keras.Sequential(
[layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def get_config(self):
config = super().get_config()
config.update({
"embed_dim": self.embed_dim,
"num_heads": self.num_heads,
"dense_dim": self.dense_dim,
})
return config
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1),
tf.constant([1, 1], dtype=tf.int32)], axis=0)
return tf.tile(mask, mult)
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(
mask[:, tf.newaxis, :], dtype="int32")
padding_mask = tf.minimum(padding_mask, causal_mask)
else:
padding_mask = mask
attention_output_1 = self.attention_1(
query=inputs,
value=inputs,
key=inputs,
attention_mask=causal_mask)
attention_output_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=attention_output_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
attention_output_2 = self.layernorm_2(
attention_output_1 + attention_output_2)
proj_output = self.dense_proj(attention_output_2)
return self.layernorm_3(attention_output_2 + proj_output)
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# Define the PositionalEmbedding layer
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
super().__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=embed_dim
)
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
# Properly handle mask computation within Keras
if mask is None:
return None
return mask
def get_config(self):
config = super().get_config()
config.update({
"sequence_length": self.sequence_length,
"vocab_size": self.vocab_size,
"embed_dim": self.embed_dim,
})
return config
# Define the TransformerEncoder layer (example implementation)
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential([
layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),
])
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
def call(self, inputs, mask=None):
if mask is not None:
mask = mask[:, tf.newaxis, :]
attention_output = self.attention(inputs, inputs, attention_mask=mask)
proj_input = self.layernorm_1(inputs + attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input + proj_output)
def get_config(self):
config = super().get_config()
config.update({
"embed_dim": self.embed_dim,
"dense_dim": self.dense_dim,
"num_heads": self.num_heads,
})
return config
import sentencepiece as spm
sp_te = spm.SentencePieceProcessor(model_file="spm_te.model")
def decode_ids(ids):
return sp_te.decode(ids)
import tensorflow as tf
from tensorflow import keras
loss_object = keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="none"
)
def masked_loss(y_true, y_pred):
# Normal sparse CE (batch, seq_len)
loss_ = loss_object(y_true, y_pred)
# Create mask (ignore pad = 0)
mask = tf.cast(tf.not_equal(y_true, 0), loss_.dtype)
# Apply mask
loss_ = loss_ * mask
# Return mean only over non-masked tokens
return tf.reduce_sum(loss_) / tf.reduce_sum(mask)
def masked_accuracy(y_true, y_pred):
y_pred = tf.argmax(y_pred, axis=-1, output_type=y_true.dtype)
matches = tf.cast(tf.equal(y_true, y_pred), tf.float32)
mask = tf.cast(tf.not_equal(y_true, 0), tf.float32)
return tf.reduce_sum(matches * mask) / tf.reduce_sum(mask)
# Define callbacks
transformer = keras.models.load_model(
"full_transformer.keras",
custom_objects={
"TransformerEncoder": TransformerEncoder,
"PositionalEmbedding": PositionalEmbedding,
"TransformerDecoder":TransformerDecoder,
"masked_loss":masked_loss,
"masked_accuracy":masked_accuracy
}
)
# Define callbacks
transformer = keras.models.load_model(
"full_transformer (2).keras",
custom_objects={
"TransformerEncoder": TransformerEncoder,
"PositionalEmbedding": PositionalEmbedding,
"TransformerDecoder":TransformerDecoder,
"masked_loss":masked_loss,
"masked_accuracy":masked_accuracy
}
)
# Define callbacks
transformer2 = keras.models.load_model(
"full_transformer (1).keras",
custom_objects={
"TransformerEncoder": TransformerEncoder,
"PositionalEmbedding": PositionalEmbedding,
"TransformerDecoder":TransformerDecoder,
"masked_loss":masked_loss,
"masked_accuracy":masked_accuracy
}
)
# Define callbacks
transformer3 = keras.models.load_model(
"full_transformer.keras",
custom_objects={
"TransformerEncoder": TransformerEncoder,
"PositionalEmbedding": PositionalEmbedding,
"TransformerDecoder":TransformerDecoder,
"masked_loss":masked_loss,
"masked_accuracy":masked_accuracy
}
)
def decode_tokens(token_ids):
# token_ids: tf.Tensor shape (seq_len,)
token_ids = tf.expand_dims(token_ids, 0) # add batch dim
decoded = tokenizer_te.detokenize(token_ids) # returns tf.Tensor of shape (1,)
return decoded[0].numpy().decode("utf-8")
import tensorflow as tf
import numpy as np
def encode_source(texts):
return tokenizer_en.tokenize(texts).to_tensor(shape=(None, sequence_length))
# Modified decode_sequence to return tokens and text
# Modified decode_sequence to return tokens and text
def decode_sequence(input_sentence, t=transformer3, max_len=50):
tokenized_input = encode_source([input_sentence])
# Initialize sequence with start token
start_id = tokenizer_te.string_to_id('[start]').numpy()
end_id = tokenizer_te.string_to_id('[end]').numpy()
seq = [3]
for _ in range(max_len):
if seq[-1] == end_id:
break
tgt = tf.expand_dims(seq, 0)
predictions = t([tokenized_input, tgt])
# Get probabilities for the last predicted token
probs = tf.nn.softmax(predictions[0, len(seq)-1, :]).numpy()
next_id = np.argmax(probs) # Select most probable token
seq.append(int(next_id))
# Decode sequence to text
decoded = tokenizer_te.detokenize(tf.constant([seq])).numpy()[0]
decoded_text= decoded.decode("utf-8").replace("[start]", "").replace("[end]", "").strip()
return decoded_text, seq
max_decoded_sentence_length = 50
# Evaluate some random samples
test_eng_texts = [pair[0] for pair in text_pairs]
final_pairs = [pair[1] for pair in text_pairs]
for _ in range(5):
idx = random.randint(0, len(test_eng_texts) - 1)
input_sentence = test_eng_texts[idx]
decoded_text, _ = decode_sequence(input_sentence, transformer)
original = final_pairs[idx].replace("[start]", "").replace("[end]", "").strip()
idx = random.randint(0, len(test_eng_texts) - 1)
input_sentence = test_eng_texts[idx]
decoded_text, _ = decode_sequence(input_sentence, transformer3)
original = final_pairs[idx].replace("[start]", "").replace("[end]", "").strip()
# BLEU expects tokenized sentences
original_tokens = tokenizer_te.tokenize([original]).numpy()[0]
decoded_tokens = tokenizer_te.tokenize([decoded_text]).numpy()[0]
print("original tokens:", original_tokens)
print("decoded_tokens:", decoded_tokens)
print("original:", original)
print("decoded:", decoded_text)
# Example decoding
decoded_text, decoded_seq = decode_sequence("your response to the question is not good you need to improve and this is order not request", transformer3)
print("Example decoding:", decoded_text, decoded_seq) |