File size: 14,046 Bytes
7586e33
 
 
 
 
 
 
 
0b0f493
 
 
7586e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b0f493
 
 
7586e33
f29098c
7586e33
 
 
 
 
0b0f493
7586e33
 
 
 
 
 
 
 
 
 
 
 
 
0b0f493
7586e33
 
0b0f493
7586e33
 
 
 
 
 
 
 
 
 
 
0b0f493
7586e33
 
 
 
0b0f493
7586e33
 
 
 
0b0f493
 
 
 
 
7586e33
 
0b0f493
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import gradio as gr
import tensorflow as tf
import sentencepiece as spm
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_text as tf_text
import os
import random
import tensorflow as tf
import numpy as np
text_pairs=[
    ("Farmers fear that the elephant will destroy the crops","వర్షాలకు చేతికి వచ్చిన పంట దెబ్బతిన్నదని రైతులు వాపోతున్నారు"),  
("The death toll in the state stands at 9,863","దీంతో రాష్ట్రంలో ఇప్పటి వరకు మొత్తం డిశ్చార్జ్‌ల సంఖ్య 9,15,626కి చేరింది"), 
("Koo is available in Hindi, Kannada, Telugu, Tamil, Bengali, Gujarati and Marathi","ప్రశ్నలతో రూపొందించిన వీడియోలు మాత్రం ఆంగ్లం, హిందీ, మరాఠీ, కన్నడ, గుజరాతీ, బెంగాల్ భాషల్లో చూడోచ్చు" ) ,
("How can the court direct the government to do this?","ప్రభుత్వం ఎలా వ్యవహరించి ఉండాల్సింది?" ),
("America is safer today" ,"అమెరికాలో పరిస్థితి రోజురోజుకూ దారుణంగా మారుతోంది" ),
("I don't look into that, to be president" ,"నేను ముఖ్యమంత్రిని కావాలని అనుకోలేదన్నారు" ),
("He had tested positive for coronavirus" ,"కరోనా లక్షణాలు కనిపించడంతో టెస్ట్ చేసుకున్న ఆయనకు పాజిటివ్ గా నిర్దారణ అయ్యింది" ),
("New Delhi: Amid the novel coronavirus situation in the country, locals in Delhi are taking precautionary measures in Delhi","న్యూడిల్లీ: దేశవ్యాప్తంగా కరోనా మహమ్మారి విజృంభిస్తున్న నేపథ్యంలో కేంద్ర ప్రభుత్వం మరింత అప్రమత్తమైంది" ), 
("She was rescued yesterday and admitted to a hospital" ,"శనివారం నాడు ఆమె ఆసుపత్రి నుండి డిశ్చార్జ్ అయ్యారు")
    
]
# -----------------------
# 3. Load SentencePiece models in TensorFlow
# -----------------------
def load_spm(path):
    with open(path, "rb") as f:
        return f.read()

spm_model_en = load_spm("spm_en.model")
spm_model_te = load_spm("spm_te.model")

tokenizer_en = tf_text.SentencepieceTokenizer(model=spm_model_en)
tokenizer_te = tf_text.SentencepieceTokenizer(model=spm_model_te)

# -----------------------
# 4. Encode text pairs
# -----------------------
sequence_length = 50

def encode_source(texts):
    return tokenizer_en.tokenize(texts).to_tensor(shape=(None, sequence_length))

def encode_target(texts):
    return tokenizer_te.tokenize(texts).to_tensor(shape=(None, sequence_length + 1))
# Convert a batch of token IDs to strings


# Example: build dataset
english_texts = [pair[0] for pair in text_pairs]
telugu_texts = [pair[1] for pair in text_pairs]

X = encode_source(tf.constant(english_texts))
Y = encode_target(tf.constant(telugu_texts))

import random
for i in range(5):
    print(random.choice(text_pairs))
len(text_pairs)

for idx in range(len(text_pairs)):
    english ,telugu = text_pairs[i]
    spanish = "[start] " + telugu + " [end]"
    text_pairs.append((english, telugu))
class TransformerDecoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim)
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim)
        self.dense_proj = keras.Sequential(
            [layers.Dense(dense_dim, activation="relu"),
             layers.Dense(embed_dim),]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()
        self.supports_masking = True

    def get_config(self):
        config = super().get_config()
        config.update({
            "embed_dim": self.embed_dim,
            "num_heads": self.num_heads,
            "dense_dim": self.dense_dim,
        })
        return config

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [tf.expand_dims(batch_size, -1),
             tf.constant([1, 1], dtype=tf.int32)], axis=0)
        return tf.tile(mask, mult)

    def call(self, inputs, encoder_outputs, mask=None):
        causal_mask = self.get_causal_attention_mask(inputs)
        if mask is not None:
            padding_mask = tf.cast(
                mask[:, tf.newaxis, :], dtype="int32")
            padding_mask = tf.minimum(padding_mask, causal_mask)
        else:
            padding_mask = mask
        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            attention_mask=causal_mask)
        attention_output_1 = self.layernorm_1(inputs + attention_output_1)
        attention_output_2 = self.attention_2(
            query=attention_output_1,
            value=encoder_outputs,
            key=encoder_outputs,
            attention_mask=padding_mask,
        )
        attention_output_2 = self.layernorm_2(
            attention_output_1 + attention_output_2)
        proj_output = self.dense_proj(attention_output_2)
        return self.layernorm_3(attention_output_2 + proj_output)
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# Define the PositionalEmbedding layer
class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
        super().__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=embed_dim
        )
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim

    def call(self, inputs):
        length = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=length, delta=1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        # Properly handle mask computation within Keras
        if mask is None:
            return None
        return mask

    def get_config(self):
        config = super().get_config()
        config.update({
            "sequence_length": self.sequence_length,
            "vocab_size": self.vocab_size,
            "embed_dim": self.embed_dim,
        })
        return config

# Define the TransformerEncoder layer (example implementation)
class TransformerEncoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.dense_proj = keras.Sequential([
            layers.Dense(dense_dim, activation="relu"),
            layers.Dense(embed_dim),
        ])
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()

    def call(self, inputs, mask=None):
        if mask is not None:
            mask = mask[:, tf.newaxis, :]
        attention_output = self.attention(inputs, inputs, attention_mask=mask)
        proj_input = self.layernorm_1(inputs + attention_output)
        proj_output = self.dense_proj(proj_input)
        return self.layernorm_2(proj_input + proj_output)

    def get_config(self):
        config = super().get_config()
        config.update({
            "embed_dim": self.embed_dim,
            "dense_dim": self.dense_dim,
            "num_heads": self.num_heads,
        })
        return config


import sentencepiece as spm
sp_te = spm.SentencePieceProcessor(model_file="spm_te.model")

def decode_ids(ids):
    return sp_te.decode(ids)



import tensorflow as tf
from tensorflow import keras

loss_object = keras.losses.SparseCategoricalCrossentropy(
    from_logits=True, reduction="none"
)

def masked_loss(y_true, y_pred):
    # Normal sparse CE (batch, seq_len)
    loss_ = loss_object(y_true, y_pred)

    # Create mask (ignore pad = 0)
    mask = tf.cast(tf.not_equal(y_true, 0), loss_.dtype)

    # Apply mask
    loss_ = loss_ * mask

    # Return mean only over non-masked tokens
    return tf.reduce_sum(loss_) / tf.reduce_sum(mask)

def masked_accuracy(y_true, y_pred):
    y_pred = tf.argmax(y_pred, axis=-1, output_type=y_true.dtype)

    matches = tf.cast(tf.equal(y_true, y_pred), tf.float32)
    mask = tf.cast(tf.not_equal(y_true, 0), tf.float32)

    return tf.reduce_sum(matches * mask) / tf.reduce_sum(mask)

# Define callbacks
transformer = keras.models.load_model(
    "full_transformer.keras",
    custom_objects={
        "TransformerEncoder": TransformerEncoder,
        "PositionalEmbedding": PositionalEmbedding,
        "TransformerDecoder":TransformerDecoder,
        "masked_loss":masked_loss,
        "masked_accuracy":masked_accuracy
        
    }
)
# Define callbacks
transformer = keras.models.load_model(
    "full_transformer (2).keras",
    custom_objects={
        "TransformerEncoder": TransformerEncoder,
        "PositionalEmbedding": PositionalEmbedding,
        "TransformerDecoder":TransformerDecoder,
        "masked_loss":masked_loss,
        "masked_accuracy":masked_accuracy
        
    }
)
# Define callbacks
transformer2 = keras.models.load_model(
    "full_transformer (1).keras",
    custom_objects={
        "TransformerEncoder": TransformerEncoder,
        "PositionalEmbedding": PositionalEmbedding,
        "TransformerDecoder":TransformerDecoder,
        "masked_loss":masked_loss,
        "masked_accuracy":masked_accuracy
        
    }
)
# Define callbacks
transformer3 = keras.models.load_model(
    "full_transformer.keras",
    custom_objects={
        "TransformerEncoder": TransformerEncoder,
        "PositionalEmbedding": PositionalEmbedding,
        "TransformerDecoder":TransformerDecoder,
        "masked_loss":masked_loss,
        "masked_accuracy":masked_accuracy
        
    }
)

def decode_tokens(token_ids):
    # token_ids: tf.Tensor shape (seq_len,)
    token_ids = tf.expand_dims(token_ids, 0)  # add batch dim
    decoded = tokenizer_te.detokenize(token_ids)  # returns tf.Tensor of shape (1,)
    return decoded[0].numpy().decode("utf-8")
import tensorflow as tf
import numpy as np

def encode_source(texts):
    return tokenizer_en.tokenize(texts).to_tensor(shape=(None, sequence_length))

# Modified decode_sequence to return tokens and text


# Modified decode_sequence to return tokens and text
def decode_sequence(input_sentence, t=transformer3, max_len=50):
    tokenized_input = encode_source([input_sentence])
    
    # Initialize sequence with start token
    start_id = tokenizer_te.string_to_id('[start]').numpy()
    end_id = tokenizer_te.string_to_id('[end]').numpy()
    seq = [3]
    
    for _ in range(max_len):
        if seq[-1] == end_id:
            break
            
        tgt = tf.expand_dims(seq, 0)
        predictions = t([tokenized_input, tgt])
        
        # Get probabilities for the last predicted token
        probs = tf.nn.softmax(predictions[0, len(seq)-1, :]).numpy()
        next_id = np.argmax(probs)  # Select most probable token
        seq.append(int(next_id))
    
    
    # Decode sequence to text
    decoded = tokenizer_te.detokenize(tf.constant([seq])).numpy()[0]
    decoded_text= decoded.decode("utf-8").replace("[start]", "").replace("[end]", "").strip()
    return decoded_text, seq

max_decoded_sentence_length = 50

# Evaluate some random samples
test_eng_texts = [pair[0] for pair in text_pairs]
final_pairs = [pair[1] for pair in text_pairs]

for _ in range(5):
    idx = random.randint(0, len(test_eng_texts) - 1)
    input_sentence = test_eng_texts[idx]
    decoded_text, _ = decode_sequence(input_sentence, transformer)
    original = final_pairs[idx].replace("[start]", "").replace("[end]", "").strip()
    
    idx = random.randint(0, len(test_eng_texts) - 1)
    input_sentence = test_eng_texts[idx]
    decoded_text, _ = decode_sequence(input_sentence, transformer3)
    original = final_pairs[idx].replace("[start]", "").replace("[end]", "").strip()
    
    # BLEU expects tokenized sentences
    original_tokens = tokenizer_te.tokenize([original]).numpy()[0]
    decoded_tokens = tokenizer_te.tokenize([decoded_text]).numpy()[0]
    print("original tokens:", original_tokens)
    print("decoded_tokens:", decoded_tokens)
    print("original:", original)
    print("decoded:", decoded_text)

# Example decoding
decoded_text, decoded_seq = decode_sequence("your response to the question is not good you need to improve and this is order not request", transformer3)
print("Example decoding:", decoded_text, decoded_seq)