Spaces:
Running
Running
File size: 26,751 Bytes
d988980 28f8ac4 a21bd5b 28f8ac4 dc56cce a21bd5b dc56cce 28f8ac4 dc56cce 28f8ac4 dc56cce d988980 a21bd5b d988980 28f8ac4 d988980 dc56cce d988980 a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce d988980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
# import gradio as gr
# import subprocess
# import os
# import sys
# from datetime import datetime
#
# # The name of your existing training script
# TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
#
# # --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
# MODEL_OUTPUT_DIR = "checkpoints"
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
#
#
# # ----------------------------------------------------------------
#
#
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
# """
# Handles the Gradio submission and executes the training script using subprocess.
# """
#
# # 1. Setup: Create output directory if it doesn't exist
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
#
# # 2. File Handling: Use the temporary path of the uploaded file
# # if dataset_file is None or not dataset_file.path.endswith(".json"):
# # return "β ERROR: Please upload a valid Label Studio JSON file.", None
#
# input_path = dataset_file.path
#
# progress(0.1, desc="Starting LayoutLMv3 Training...")
#
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
#
# # 3. Construct the subprocess command
# command = [
# sys.executable,
# TRAINING_SCRIPT,
# "--mode", "train",
# "--input", input_path,
# "--batch_size", str(batch_size),
# "--epochs", str(epochs),
# "--lr", str(lr),
# "--max_len", str(max_len)
# ]
#
# log_output += f"Executing command: {' '.join(command)}\n\n"
#
# try:
# # 4. Run the training script and capture output
# process = subprocess.Popen(
# command,
# stdout=subprocess.PIPE,
# stderr=subprocess.STDOUT,
# text=True,
# bufsize=1
# )
#
# # Stream logs in real-time
# for line in iter(process.stdout.readline, ""):
# log_output += line
# yield log_output, None # Send partial log to Gradio output
#
# process.stdout.close()
# return_code = process.wait()
#
# # 5. Check for successful completion
# if return_code == 0:
# log_output += "\nβ
TRAINING COMPLETE! Model saved."
#
# # 6. Prepare download links based on script's saved path
# model_exists = os.path.exists(MODEL_FILE_PATH)
#
# if model_exists:
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
# # Return final log, and the file path for Gradio's download component
# return log_output, MODEL_FILE_PATH
# else:
# log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
# return log_output, None
# else:
# log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
# return log_output, None
#
# except FileNotFoundError:
# return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
# except Exception as e:
# return f"β An unexpected error occurred: {e}", None
#
#
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
# gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
# gr.Markdown(
# """
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
#
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
# """
# )
#
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="1. Upload Label Studio JSON Dataset"
# )
#
# gr.Markdown("---")
# gr.Markdown("### βοΈ Training Parameters")
#
# batch_size_input = gr.Slider(
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
# )
# epochs_input = gr.Slider(
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
# )
# lr_input = gr.Number(
# value=5e-5, label="Learning Rate (--lr)"
# )
# max_len_input = gr.Number(
# value=512, label="Max Sequence Length (--max_len)"
# )
#
# with gr.Column(scale=2):
# train_button = gr.Button("π₯ Train Model", variant="primary")
#
# log_output = gr.Textbox(
# label="Training Log Output",
# lines=20,
# autoscroll=True,
# placeholder="Click 'Train Model' to start and see real-time logs..."
# )
#
# gr.Markdown("---")
# gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
#
# # Only providing the download link for the saved .pth model file
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
#
# # Define the action when the button is clicked
# train_button.click(
# fn=train_model,
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
# outputs=[log_output, model_download]
# )
#
# if __name__ == "__main__":
# demo.launch(server_port=7860, server_name="0.0.0.0")
# import gradio as gr
# import subprocess
# import os
# import sys
# from datetime import datetime
#
# # The name of your existing training script
# TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
#
# # --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
# MODEL_OUTPUT_DIR = "checkpoints"
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
#
#
# # ----------------------------------------------------------------
#
#
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
# """
# Handles the Gradio submission and executes the training script using subprocess.
# """
#
# # 1. Setup: Create output directory if it doesn't exist
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
#
# # 2. File Handling: Use the temporary path of the uploaded file
# if dataset_file is None:
# yield "β ERROR: Please upload a file.", None
# return
#
# # FIX: Gradio returns the path in the .name attribute, not .path
# input_path = dataset_file.name
#
# if not input_path.lower().endswith(".json"):
# yield "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
# return
#
# progress(0.1, desc="Starting LayoutLMv3 Training...")
#
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
#
# # 3. Construct the subprocess command
# command = [
# sys.executable,
# TRAINING_SCRIPT,
# "--mode", "train",
# "--input", input_path,
# "--batch_size", str(batch_size),
# "--epochs", str(epochs),
# "--lr", str(lr),
# "--max_len", str(max_len)
# ]
#
# log_output += f"Executing command: {' '.join(command)}\n\n"
# yield log_output, None # Yield the command to the log output
#
# try:
# # 4. Run the training script and capture output
# process = subprocess.Popen(
# command,
# stdout=subprocess.PIPE,
# stderr=subprocess.STDOUT,
# text=True,
# bufsize=1
# )
#
# # Stream logs in real-time
# for line in iter(process.stdout.readline, ""):
# log_output += line
# yield log_output, None # Send partial log to Gradio output
#
# process.stdout.close()
# return_code = process.wait()
#
# # 5. Check for successful completion
# if return_code == 0:
# log_output += "\nβ
TRAINING COMPLETE! Model saved."
#
# # 6. Prepare download links based on script's saved path
# model_exists = os.path.exists(MODEL_FILE_PATH)
#
# if model_exists:
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
# # Return final log, and the file path for Gradio's download component
# return log_output, MODEL_FILE_PATH
# else:
# log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
# return log_output, None
# else:
# log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
# return log_output, None
#
# except FileNotFoundError:
# return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
# except Exception as e:
# return f"β An unexpected error occurred: {e}", None
#
#
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
# gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
# gr.Markdown(
# """
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
#
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
# """
# )
#
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="1. Upload Label Studio JSON Dataset"
# )
#
# gr.Markdown("---")
# gr.Markdown("### βοΈ Training Parameters")
#
# batch_size_input = gr.Slider(
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
# )
# epochs_input = gr.Slider(
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
# )
# lr_input = gr.Number(
# value=5e-5, label="Learning Rate (--lr)"
# )
# max_len_input = gr.Number(
# value=512, label="Max Sequence Length (--max_len)"
# )
#
# with gr.Column(scale=2):
# train_button = gr.Button("π₯ Train Model", variant="primary")
#
# log_output = gr.Textbox(
# label="Training Log Output",
# lines=20,
# autoscroll=True,
# placeholder="Click 'Train Model' to start and see real-time logs..."
# )
#
# gr.Markdown("---")
# gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
#
# # Only providing the download link for the saved .pth model file
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
#
# # Define the action when the button is clicked
# train_button.click(
# fn=train_model,
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
# outputs=[log_output, model_download]
# )
#
# if __name__ == "__main__":
# # Removed server_port and server_name as they are often unnecessary
# # and sometimes cause issues in managed Space environments.
# demo.launch()
#
# import gradio as gr
# import subprocess
# import os
# import sys
# from datetime import datetime
#
# # FIX: Update the script name to the correct one you uploaded
# TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
#
# # --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
# MODEL_OUTPUT_DIR = "checkpoints"
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
#
#
# # ----------------------------------------------------------------
#
#
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
# """
# Handles the Gradio submission and executes the training script using subprocess.
# """
#
# # 1. Setup: Create output directory if it doesn't exist
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
#
# # 2. File Handling: Use the temporary path of the uploaded file
# if dataset_file is None:
# yield "β ERROR: Please upload a file.", None
# return
#
# # Using .name (Corrected in previous steps)
# input_path = dataset_file.name
#
# if not input_path.lower().endswith(".json"):
# yield "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
# return
#
# progress(0.1, desc="Starting LayoutLMv3 Training...")
#
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
#
# # 3. Construct the subprocess command
# command = [
# sys.executable,
# # Now uses the corrected TRAINING_SCRIPT variable
# TRAINING_SCRIPT,
# "--mode", "train",
# "--input", input_path,
# "--batch_size", str(batch_size),
# "--epochs", str(epochs),
# "--lr", str(lr),
# "--max_len", str(max_len)
# ]
#
# log_output += f"Executing command: {' '.join(command)}\n\n"
# yield log_output, None # Yield the command to the log output
#
# try:
# # 4. Run the training script and capture output
# process = subprocess.Popen(
# command,
# stdout=subprocess.PIPE,
# stderr=subprocess.STDOUT,
# text=True,
# bufsize=1
# )
#
# # Stream logs in real-time
# for line in iter(process.stdout.readline, ""):
# log_output += line
# yield log_output, None # Send partial log to Gradio output
#
# process.stdout.close()
# return_code = process.wait()
#
# # 5. Check for successful completion
# if return_code == 0:
# log_output += "\nβ
TRAINING COMPLETE! Model saved."
#
# # 6. Prepare download links based on script's saved path
# model_exists = os.path.exists(MODEL_FILE_PATH)
#
# if model_exists:
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
# # Return final log, and the file path for Gradio's download component
# return log_output, MODEL_FILE_PATH
# else:
# log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
# return log_output, None
# else:
# log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
# return log_output, None
#
# except FileNotFoundError:
# return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
# except Exception as e:
# return f"β An unexpected error occurred: {e}", None
#
#
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
# gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
# gr.Markdown(
# """
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
#
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
# """
# )
#
# with gr.Row():
# with gr.Column(scale=1):
# file_input = gr.File(
# label="1. Upload Label Studio JSON Dataset"
# )
#
# gr.Markdown("---")
# gr.Markdown("### βοΈ Training Parameters")
#
# batch_size_input = gr.Slider(
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
# )
# epochs_input = gr.Slider(
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
# )
# lr_input = gr.Number(
# value=5e-5, label="Learning Rate (--lr)"
# )
# max_len_input = gr.Number(
# value=512, label="Max Sequence Length (--max_len)"
# )
#
# with gr.Column(scale=2):
# train_button = gr.Button("π₯ Train Model", variant="primary")
#
# log_output = gr.Textbox(
# label="Training Log Output",
# lines=20,
# autoscroll=True,
# placeholder="Click 'Train Model' to start and see real-time logs..."
# )
#
# gr.Markdown("---")
# gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
#
# # Only providing the download link for the saved .pth model file
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
#
# # Define the action when the button is clicked
# train_button.click(
# fn=train_model,
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
# outputs=[log_output, model_download]
# )
#
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
import subprocess
import os
import sys
from datetime import datetime
import shutil
# FIX: Update the script name to the correct one you uploaded
TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
# --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
MODEL_OUTPUT_DIR = "checkpoints"
MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
# ----------------------------------------------------------------
def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
"""
Handles the Gradio submission and executes the training script using subprocess.
"""
# 1. Setup: Create output directory if it doesn't exist
os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
# 2. File Handling: Use the temporary path of the uploaded file
if dataset_file is None:
return "β ERROR: Please upload a file.", None
# Using .name (Corrected in previous steps)
input_path = dataset_file.name
if not input_path.lower().endswith(".json"):
return "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
progress(0.1, desc="Starting LayoutLMv3 Training...")
log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
# 3. Construct the subprocess command
command = [
sys.executable,
TRAINING_SCRIPT,
"--mode", "train",
"--input", input_path,
"--batch_size", str(batch_size),
"--epochs", str(epochs),
"--lr", str(lr),
"--max_len", str(max_len)
]
log_output += f"Executing command: {' '.join(command)}\n\n"
try:
# 4. Run the training script and capture output
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1
)
# Stream logs in real-time
for line in iter(process.stdout.readline, ""):
log_output += line
# Print to console as well for debugging
print(line, end='')
process.stdout.close()
return_code = process.wait()
# 5. Check for successful completion
if return_code == 0:
log_output += "\nβ
TRAINING COMPLETE! Model saved."
print("\nβ
TRAINING COMPLETE! Model saved.")
# 6. Verify model file exists
if os.path.exists(MODEL_FILE_PATH):
file_size = os.path.getsize(MODEL_FILE_PATH) / (1024 * 1024) # Size in MB
log_output += f"\nπ¦ Model file: {MODEL_FILE_PATH}"
log_output += f"\nπ Model size: {file_size:.2f} MB"
log_output += f"\nβ¬οΈ Click the download button below to save your model!"
print(f"\nβ
Model exists at: {MODEL_FILE_PATH} ({file_size:.2f} MB)")
# Create a copy in the root directory for easier access
root_copy = MODEL_FILE_NAME
try:
shutil.copy2(MODEL_FILE_PATH, root_copy)
log_output += f"\nπ Copy created: {root_copy}"
print(f"β
Created copy at: {root_copy}")
except Exception as e:
log_output += f"\nβ οΈ Could not create root copy: {e}"
root_copy = MODEL_FILE_PATH
# Return the full absolute path to ensure Gradio can find it
absolute_path = os.path.abspath(root_copy)
log_output += f"\nπ Download path: {absolute_path}"
return log_output, absolute_path
else:
log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
log_output += f"\nπ Checking directory contents..."
# List files in checkpoints directory for debugging
if os.path.exists(MODEL_OUTPUT_DIR):
files = os.listdir(MODEL_OUTPUT_DIR)
log_output += f"\nπ Files in {MODEL_OUTPUT_DIR}: {files}"
else:
log_output += f"\nβ Directory {MODEL_OUTPUT_DIR} does not exist!"
return log_output, None
else:
log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
return log_output, None
except FileNotFoundError:
error_msg = f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space."
print(error_msg)
return error_msg, None
except Exception as e:
error_msg = f"β An unexpected error occurred: {e}"
print(error_msg)
import traceback
print(traceback.format_exc())
return error_msg, None
# --- Gradio Interface Setup (using Blocks for a nicer layout) ---
with gr.Blocks(title="LayoutLMv3 Fine-Tuning App", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
gr.Markdown(
"""
Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model.
**β οΈ IMPORTANT - Free Tier Users:**
- **Download your model IMMEDIATELY** after training completes!
- The model file is **temporary** and will be deleted when the Space restarts.
- The download button will appear below once training is complete.
- Model is saved as: **`layoutlmv3_crf_passage.pth`**
**β±οΈ Timeout Note:** Training may timeout on free tier. Consider reducing epochs or batch size for faster training.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Dataset Upload")
file_input = gr.File(
label="Upload Label Studio JSON Dataset",
file_types=[".json"]
)
gr.Markdown("---")
gr.Markdown("### βοΈ Training Parameters")
batch_size_input = gr.Slider(
minimum=1, maximum=16, step=1, value=4,
label="Batch Size",
info="Smaller = less memory, slower training"
)
epochs_input = gr.Slider(
minimum=1, maximum=10, step=1, value=3,
label="Epochs",
info="Fewer epochs = faster training (recommended: 3-5)"
)
lr_input = gr.Number(
value=5e-5, label="Learning Rate",
info="Default: 5e-5"
)
max_len_input = gr.Slider(
minimum=128, maximum=512, step=128, value=512,
label="Max Sequence Length",
info="Shorter = faster training, less memory"
)
train_button = gr.Button("π₯ Start Training", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### π Training Progress")
log_output = gr.Textbox(
label="Training Logs",
lines=25,
max_lines=30,
autoscroll=True,
show_copy_button=True,
placeholder="Click 'Start Training' to begin...\n\nLogs will appear here in real-time."
)
gr.Markdown("### β¬οΈ Download Trained Model")
model_download = gr.File(
label="Trained Model File (layoutlmv3_crf_passage.pth)",
interactive=False,
visible=True
)
gr.Markdown(
"""
**π₯ Download Instructions:**
1. Wait for training to complete (β
appears in logs)
2. Click the download button/icon that appears above
3. Save the `.pth` file to your local machine
4. **Do this immediately** - file is temporary!
**π§ Troubleshooting:**
- If download button doesn't appear, check the logs for errors
- Try reducing epochs or batch size if timeout occurs
- Ensure your JSON file is properly formatted
"""
)
# Define the action when the button is clicked
train_button.click(
fn=train_model,
inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
outputs=[log_output, model_download],
api_name="train"
)
# Add example info
gr.Markdown(
"""
---
### π About
This Space fine-tunes LayoutLMv3 with CRF for document understanding tasks including:
- Questions, Options, Answers
- Section Headings
- Passages
**Model Details:** LayoutLMv3-base + CRF layer for sequence labeling
"""
)
if __name__ == "__main__":
demo.launch() |