LayoutLM_train / HF_LayoutLM_with_Passage.py
aagamjtdev's picture
app.py
525a040
raw
history blame
38.7 kB
# import json
# import argparse
# import os
# import random
# import numpy as np
# import torch
# import torch.nn as nn
# from torch.utils.data import Dataset, DataLoader, random_split
# from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
# from TorchCRF import CRF
# from torch.optim import AdamW
# from tqdm import tqdm # Keep for evaluate
# from sklearn.metrics import precision_recall_fscore_support
# import fitz # PyMuPDF
# import pytesseract
# from PIL import Image
# from pdf2image import convert_from_path
#
# # --- Configuration for Augmentation ---
# MAX_BBOX_DIMENSION = 999
# MAX_SHIFT = 30
# AUGMENTATION_FACTOR = 1
#
#
# # -------------------------------------
#
#
# # -------------------------
# # Step 1: Preprocessing (Label Studio β†’ BIO + bboxes)
# # -------------------------
# def preprocess_labelstudio(input_path, output_path):
# with open(input_path, "r", encoding="utf-8") as f:
# data = json.load(f)
#
# processed = []
# total_items = len(data)
# print(f"πŸ”„ Starting preprocessing of {total_items} documents...")
#
# for i, item in enumerate(data):
# words = item["data"]["original_words"]
# bboxes = item["data"]["original_bboxes"]
# labels = ["O"] * len(words)
#
# if "annotations" in item:
# for ann in item["annotations"]:
# for res in ann["result"]:
# # Check if the result item is a span annotation
# if "value" in res and "labels" in res["value"]:
# text = res["value"]["text"]
# tag = res["value"]["labels"][0]
# # Some tokenizers may split words, so we must find a consecutive word match.
# text_tokens = text.split()
#
# for j in range(len(words) - len(text_tokens) + 1):
# if words[j:j + len(text_tokens)] == text_tokens:
# labels[j] = f"B-{tag}"
# for k in range(1, len(text_tokens)):
# labels[j + k] = f"I-{tag}"
# break # Move to next annotation if a match is found
#
# processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
#
# # --- HEARTBEAT LOGGING ---
# if (i + 1) % 50 == 0:
# print(f"--- HEARTBEAT: Preprocessed {i + 1}/{total_items} documents ---")
# # -------------------------
#
# print(f"βœ… Preprocessed data saved to {output_path}")
# return output_path
#
#
# # -------------------------
# # Step 1.5: Bounding Box Augmentation
# # -------------------------
#
# def translate_bbox(bbox, shift_x, shift_y):
# """
# Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
# and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
# """
# x_min, y_min, x_max, y_max = bbox
#
# new_x_min = x_min + shift_x
# new_y_min = y_min + shift_y
# new_x_max = x_max + shift_x
# new_y_max = y_max + shift_y
#
# # Clamp the new coordinates
# new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
# new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
# new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
# new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
#
# # Safety check
# if new_x_min > new_x_max: new_x_min = new_x_max
# if new_y_min > new_y_max: new_y_min = new_y_max
#
# return [new_x_min, new_y_min, new_x_max, new_y_max]
#
#
# def augment_sample(sample):
# """
# Generates a new sample by translating all bounding boxes.
# """
# shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
# shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
#
# new_sample = sample.copy()
#
# # Ensure tokens and labels are copied (they remain unchanged)
# new_sample["tokens"] = sample["tokens"]
# new_sample["labels"] = sample["labels"]
#
# # Translate all bounding boxes
# new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
# new_sample["bboxes"] = new_bboxes
#
# return new_sample
#
#
# def augment_and_save_dataset(input_json_path, output_json_path):
# """
# Loads preprocessed data, performs augmentation, and saves the result.
# """
# print(f"πŸ”„ Loading preprocessed data from {input_json_path} for augmentation...")
# with open(input_json_path, 'r', encoding="utf-8") as f:
# training_data = json.load(f)
#
# augmented_data = []
# original_count = len(training_data)
#
# print(f"πŸ”„ Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
#
# for i, original_sample in enumerate(training_data):
# # 1. Add the original sample
# augmented_data.append(original_sample)
#
# # 2. Generate augmented samples
# for _ in range(AUGMENTATION_FACTOR):
# if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
# augmented_data.append(augment_sample(original_sample))
# else:
# print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
#
# # --- HEARTBEAT LOGGING ---
# if (i + 1) % 50 == 0:
# print(f"--- HEARTBEAT: Augmented {i + 1}/{original_count} original documents ---")
# # -------------------------
#
# augmented_count = len(augmented_data)
# print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
#
# # Save the augmented dataset
# with open(output_json_path, 'w', encoding="utf-8") as f:
# json.dump(augmented_data, f, indent=2, ensure_ascii=False)
#
# print(f"βœ… Augmented data saved to {output_json_path}")
# return output_json_path
#
#
# # -------------------------
# # Step 2: Dataset Class (Unchanged)
# # -------------------------
# class LayoutDataset(Dataset):
# def __init__(self, json_path, tokenizer, label2id, max_len=512):
# with open(json_path, "r", encoding="utf-8") as f:
# self.data = json.load(f)
# self.tokenizer = tokenizer
# self.label2id = label2id
# self.max_len = max_len
#
# def __len__(self):
# return len(self.data)
#
# def __getitem__(self, idx):
# item = self.data[idx]
# words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
#
# # Tokenize
# encodings = self.tokenizer(
# words,
# boxes=bboxes,
# padding="max_length",
# truncation=True,
# max_length=self.max_len,
# return_offsets_mapping=True,
# return_tensors="pt"
# )
#
# # Align labels to word pieces
# word_ids = encodings.word_ids(batch_index=0)
# label_ids = []
# for word_id in word_ids:
# if word_id is None:
# label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
# else:
# label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
#
# encodings.pop("offset_mapping")
# encodings["labels"] = torch.tensor(label_ids)
#
# return {key: val.squeeze(0) for key, val in encodings.items()}
#
#
# # -------------------------
# # Step 3: Model Architecture (Unchanged)
# # -------------------------
# class LayoutLMv3CRF(nn.Module):
# def __init__(self, model_name, num_labels):
# super().__init__()
# self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
# self.dropout = nn.Dropout(0.1)
# self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
# self.crf = CRF(num_labels)
#
# def forward(self, input_ids, bbox, attention_mask, labels=None):
# outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
# sequence_output = self.dropout(outputs.last_hidden_state)
# emissions = self.classifier(sequence_output)
#
# if labels is not None:
# # Training mode: calculate loss
# log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
# return -log_likelihood.mean()
# else:
# # Inference mode: decode best path
# best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
# return best_paths
#
#
# # -------------------------
# # Step 4: Training + Evaluation (Modified for Verbose Logging)
# # -------------------------
# def train_one_epoch(model, dataloader, optimizer, device):
# model.train()
# total_loss = 0
#
# # Removed tqdm here to ensure cleaner log streaming to Gradio.
# for batch_idx, batch in enumerate(dataloader):
# batch = {k: v.to(device) for k, v in batch.items()}
# labels = batch.pop("labels")
# optimizer.zero_grad()
# loss = model(**batch, labels=labels)
# loss.backward()
# optimizer.step()
# total_loss += loss.item()
#
# # VERBOSE LOGGING: Print batch progress every 5 batches to keep the Gradio connection alive
# if (batch_idx + 1) % 5 == 0:
# print(f"| Epoch Progress | Batch {batch_idx + 1}/{len(dataloader)} | Current Batch Loss: {loss.item():.4f}")
#
# return total_loss / len(dataloader)
#
#
# def evaluate(model, dataloader, device, id2label):
# model.eval()
# all_preds, all_labels = [], []
# with torch.no_grad():
# for batch in tqdm(dataloader, desc="Evaluating"):
# batch = {k: v.to(device) for k, v in batch.items()}
# labels = batch.pop("labels").cpu().numpy()
# preds = model(**batch)
# for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
# valid = mask == 1
# l = l[valid].tolist()
# all_labels.extend(l)
# all_preds.extend(p[:len(l)])
#
# # Exclude the "O" label and other special tokens if necessary, but using 'micro' average
# # on all valid tokens is typically fine for the initial evaluation.
# precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
# return precision, recall, f1
#
#
# # -------------------------
# # Step 5: Main Pipeline (Training) - MODIFIED LABELS
# # -------------------------
# def main(args):
# # LABELS UPDATED: Added SECTION_HEADING and PASSAGE
# labels = [
# "O",
# "B-QUESTION", "I-QUESTION",
# "B-OPTION", "I-OPTION",
# "B-ANSWER", "I-ANSWER",
# "B-SECTION_HEADING", "I-SECTION_HEADING",
# "B-PASSAGE", "I-PASSAGE"
# ]
# label2id = {l: i for i, l in enumerate(labels)}
# id2label = {i: l for l, i in label2id.items()}
#
# # 1. Preprocess and save the initial training data
# print("\n--- START PHASE: PREPROCESSING ---")
# initial_bio_json = "training_data_bio_bboxes.json"
# preprocess_labelstudio(args.input, initial_bio_json)
#
# # 2. Augment the dataset with translated bboxes
# print("\n--- START PHASE: AUGMENTATION ---")
# augmented_bio_json = "augmented_training_data_bio_bboxes.json"
# final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
#
# # Clean up the intermediary file (optional)
# # os.remove(initial_bio_json)
#
# # 3. Load and split augmented dataset
# print("\n--- START PHASE: MODEL/DATASET SETUP ---")
# tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
# dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
# val_size = int(0.2 * len(dataset))
# train_size = len(dataset) - val_size
#
# # Use a fixed seed for reproducibility in split
# torch.manual_seed(42)
# train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
# val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
# print(f"Dataset split: Train samples: {train_size}, Validation samples: {val_size}")
#
# # 4. Initialize and load model
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"Using device: {device}")
# # Num_labels is based on the updated 'labels' list
# model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
# ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
# os.makedirs("checkpoints", exist_ok=True)
# if os.path.exists(ckpt_path):
# # NOTE: Loading an old checkpoint will likely fail now because num_labels has changed,
# # unless the old checkpoint had the *exact* same number of labels.
# # It is recommended to start training from scratch.
# # print(f"πŸ”„ Loading checkpoint from {ckpt_path}")
# # model.load_state_dict(torch.load(ckpt_path, map_location=device))
# print(f"⚠️ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
#
# optimizer = AdamW(model.parameters(), lr=args.lr)
#
# # 5. Training loop
# for epoch in range(args.epochs):
# print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
# avg_loss = train_one_epoch(model, train_loader, optimizer, device)
#
# print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
# precision, recall, f1 = evaluate(model, val_loader, device, id2label)
#
# print(
# f"Epoch {epoch + 1}/{args.epochs} | Avg Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
# torch.save(model.state_dict(), ckpt_path)
# print(f"πŸ’Ύ Model saved at {ckpt_path}")
#
#
# def run_inference(pdf_path, model_path, output_path):
# # LABELS UPDATED: Added SECTION_HEADING and PASSAGE (Must match main)
# labels = [
# "O",
# "B-QUESTION", "I-QUESTION",
# "B-OPTION", "I-OPTION",
# "B-ANSWER", "I-ANSWER",
# "B-SECTION_HEADING", "I-SECTION_HEADING",
# "B-PASSAGE", "I-PASSAGE"
# ]
# label2id = {l: i for i, l in enumerate(labels)}
# id2label = {i: l for l, i in label2id.items()}
# tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
#
# # Load the trained model
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
# try:
# model.load_state_dict(torch.load(model_path, map_location=device))
# except Exception as e:
# print(
# f"❌ Error loading model state: {e}. Ensure the model at {model_path} has been successfully trained with the new labels.")
# return
#
# model.eval()
#
# # Process PDF with OCR
# try:
# doc = fitz.open(pdf_path)
# except Exception as e:
# print(f"❌ Error opening PDF: {e}")
# return
#
# all_predictions = []
# tesseract_config = '--psm 6'
#
# for page_num in range(len(doc)):
# page = doc.load_page(page_num)
#
# # Get a high-resolution image of the page for Tesseract
# pix = page.get_pixmap(dpi=300)
# img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
#
# # Get page dimensions from PyMuPDF
# page_width, page_height = page.bound().width, page.bound().height
#
# # Get OCR data (words and bboxes)
# ocr_data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT, config=tesseract_config)
# words = [word for word in ocr_data['text'] if word.strip()]
#
# # Skip empty pages
# if not words:
# continue
#
# # Get the scaling factors from the image resolution to the PDF's native resolution
# x_scale = page_width / pix.width
# y_scale = page_height / pix.height
#
# # Create original pixel bboxes
# bboxes_raw = [[
# ocr_data['left'][i],
# ocr_data['top'][i],
# ocr_data['left'][i] + ocr_data['width'][i],
# ocr_data['top'][i] + ocr_data['height'][i]
# ] for i in range(len(ocr_data['text'])) if ocr_data['text'][i].strip()]
#
# # Normalize bboxes to 0-1000 scale using the correct scaling factors
# normalized_bboxes = [[
# int(1000 * (b[0] * x_scale) / page_width),
# int(1000 * (b[1] * y_scale) / page_height),
# int(1000 * (b[2] * x_scale) / page_width),
# int(1000 * (b[3] * y_scale) / page_height)
# ] for b in bboxes_raw]
#
# # Tokenize and run inference
# inputs = tokenizer(words, boxes=normalized_bboxes, return_tensors="pt", truncation=True).to(device)
#
# with torch.no_grad():
# # The model is run on the normalized bboxes
# preds = model(**inputs)
#
# # Align predictions back to words
# word_ids = inputs.word_ids(batch_index=0)
# final_preds = []
# previous_word_idx = None
# for idx, word_id in enumerate(word_ids):
# if word_id is not None and word_id != previous_word_idx:
# # The model returns a list of predicted classes for each token
# final_preds.append(id2label[preds[0][idx]])
# previous_word_idx = word_id
#
# # Prepare structured output
# page_results = []
# # Tesseract returns word list that is shorter than ocr_data if it contains empty strings.
# # We need to use the cleaned 'words' list and its corresponding filtered bboxes.
# # Note: We must ensure that the word and bbox lists passed to tokenizer and the filtered
# # final_preds list are all correctly aligned with the original ocr_data indices.
# # Since 'words' and 'bboxes_raw' are filtered exactly the same way (by word.strip()),
# # and 'final_preds' is aligned back to 'words', we can zip them.
# for word, bbox, label in zip(words, bboxes_raw, final_preds):
# page_results.append({
# "word": word,
# "bbox": bbox,
# "predicted_label": label
# })
# all_predictions.extend(page_results)
#
# doc.close()
# with open(output_path, "w") as f:
# json.dump(all_predictions, f, indent=2, ensure_ascii=False)
# print(f"βœ… Inference complete. Predictions saved to {output_path}")
#
#
# # -------------------------
# # Step 7: Main Execution (Unchanged)
# # -------------------------
# if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
# parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
# help="Select mode: 'train' or 'infer'")
# parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
# parser.add_argument("--batch_size", type=int, default=4)
# parser.add_argument("--epochs", type=int, default=5)
# parser.add_argument("--lr", type=float, default=5e-5)
# parser.add_argument("--max_len", type=int, default=512)
# args = parser.parse_args()
#
# if args.mode == "train":
# if not args.input:
# parser.error("--input is required for 'train' mode.")
# main(args)
# elif args.mode == "infer":
# if not args.input:
# parser.error("--input is required for 'infer' mode.")
# # NOTE: The model path here should ideally match the ckpt_path in main: checkpoints/layoutlmv3_crf_passage.pth
# run_inference(args.input, "checkpoints/layoutlmv3_crf_new_passage.pth", "inference_predictions.json")
import json
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
from TorchCRF import CRF
from torch.optim import AdamW
from tqdm import tqdm
from sklearn.metrics import precision_recall_fscore_support
import fitz # PyMuPDF
import pytesseract
from PIL import Image
from pdf2image import convert_from_path
# --- Configuration for Augmentation ---
MAX_BBOX_DIMENSION = 999
MAX_SHIFT = 30
AUGMENTATION_FACTOR = 1
# -------------------------------------
# -------------------------
# Step 1: Preprocessing (Label Studio β†’ BIO + bboxes)
# -------------------------
def preprocess_labelstudio(input_path, output_path):
with open(input_path, "r", encoding="utf-8") as f:
data = json.load(f)
processed = []
total_items = len(data) # Added for potential verbose logging
print(f"πŸ”„ Starting preprocessing of {total_items} documents...")
for item in data:
words = item["data"]["original_words"]
bboxes = item["data"]["original_bboxes"]
labels = ["O"] * len(words)
if "annotations" in item:
for ann in item["annotations"]:
for res in ann["result"]:
# Check if the result item is a span annotation
if "value" in res and "labels" in res["value"]:
text = res["value"]["text"]
tag = res["value"]["labels"][0]
# Some tokenizers may split words, so we must find a consecutive word match.
text_tokens = text.split()
for i in range(len(words) - len(text_tokens) + 1):
if words[i:i + len(text_tokens)] == text_tokens:
labels[i] = f"B-{tag}"
for j in range(1, len(text_tokens)):
labels[i + j] = f"I-{tag}"
break # Move to next annotation if a match is found
processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
with open(output_path, "w", encoding="utf-8") as f:
json.dump(processed, f, indent=2, ensure_ascii=False)
print(f"βœ… Preprocessed data saved to {output_path}")
return output_path
# -------------------------
# Step 1.5: Bounding Box Augmentation
# -------------------------
def translate_bbox(bbox, shift_x, shift_y):
"""
Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
"""
x_min, y_min, x_max, y_max = bbox
new_x_min = x_min + shift_x
new_y_min = y_min + shift_y
new_x_max = x_max + shift_x
new_y_max = y_max + shift_y
# Clamp the new coordinates
new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
# Safety check
if new_x_min > new_x_max: new_x_min = new_x_max
if new_y_min > new_y_max: new_y_min = new_y_max
return [new_x_min, new_y_min, new_x_max, new_y_max]
def augment_sample(sample):
"""
Generates a new sample by translating all bounding boxes.
"""
shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
new_sample = sample.copy()
# Ensure tokens and labels are copied (they remain unchanged)
new_sample["tokens"] = sample["tokens"]
new_sample["labels"] = sample["labels"]
# Translate all bounding boxes
new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
new_sample["bboxes"] = new_bboxes
return new_sample
def augment_and_save_dataset(input_json_path, output_json_path):
"""
Loads preprocessed data, performs augmentation, and saves the result.
"""
print(f"πŸ”„ Loading preprocessed data from {input_json_path} for augmentation...")
with open(input_json_path, 'r', encoding="utf-8") as f:
training_data = json.load(f)
augmented_data = []
original_count = len(training_data)
print(f"πŸ”„ Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
for i, original_sample in enumerate(training_data):
# 1. Add the original sample
augmented_data.append(original_sample)
# 2. Generate augmented samples
for _ in range(AUGMENTATION_FACTOR):
if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
augmented_data.append(augment_sample(original_sample))
else:
print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
augmented_count = len(augmented_data)
print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
# Save the augmented dataset
with open(output_json_path, 'w', encoding="utf-8") as f:
json.dump(augmented_data, f, indent=2, ensure_ascii=False)
print(f"βœ… Augmented data saved to {output_json_path}")
return output_json_path
# -------------------------
# Step 2: Dataset Class (Unchanged)
# -------------------------
class LayoutDataset(Dataset):
def __init__(self, json_path, tokenizer, label2id, max_len=512):
with open(json_path, "r", encoding="utf-8") as f:
self.data = json.load(f)
self.tokenizer = tokenizer
self.label2id = label2id
self.max_len = max_len
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
# Tokenize
encodings = self.tokenizer(
words,
boxes=bboxes,
padding="max_length",
truncation=True,
max_length=self.max_len,
return_offsets_mapping=True,
return_tensors="pt"
)
# Align labels to word pieces
word_ids = encodings.word_ids(batch_index=0)
label_ids = []
for word_id in word_ids:
if word_id is None:
label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
else:
label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
encodings.pop("offset_mapping")
encodings["labels"] = torch.tensor(label_ids)
return {key: val.squeeze(0) for key, val in encodings.items()}
# -------------------------
# Step 3: Model Architecture (Unchanged)
# -------------------------
class LayoutLMv3CRF(nn.Module):
def __init__(self, model_name, num_labels):
super().__init__()
self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
self.crf = CRF(num_labels)
def forward(self, input_ids, bbox, attention_mask, labels=None):
outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
sequence_output = self.dropout(outputs.last_hidden_state)
emissions = self.classifier(sequence_output)
if labels is not None:
# Training mode: calculate loss
log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
return -log_likelihood.mean()
else:
# Inference mode: decode best path
best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
return best_paths
# -------------------------
# Step 4: Training + Evaluation (Unchanged)
# -------------------------
def train_one_epoch(model, dataloader, optimizer, device):
model.train()
total_loss = 0
for batch in tqdm(dataloader, desc="Training"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels")
optimizer.zero_grad()
loss = model(**batch, labels=labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
def evaluate(model, dataloader, device, id2label):
model.eval()
all_preds, all_labels = [], []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Evaluating"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels").cpu().numpy()
preds = model(**batch)
for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
valid = mask == 1
l = l[valid].tolist()
all_labels.extend(l)
all_preds.extend(p[:len(l)])
# Exclude the "O" label and other special tokens if necessary, but using 'micro' average
# on all valid tokens is typically fine for the initial evaluation.
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
return precision, recall, f1
# -------------------------
# Step 5: Main Pipeline (Training) - MODIFIED LABELS + FILE PATH FIX
# -------------------------
def main(args):
# LABELS UPDATED: Added SECTION_HEADING and PASSAGE
labels = [
"O",
"B-QUESTION", "I-QUESTION",
"B-OPTION", "I-OPTION",
"B-ANSWER", "I-ANSWER",
"B-SECTION_HEADING", "I-SECTION_HEADING",
"B-PASSAGE", "I-PASSAGE"
]
label2id = {l: i for i, l in enumerate(labels)}
id2label = {i: l for l, i in label2id.items()}
# --- FIX for FileNotFoundError: Use a temporary directory for intermediate files ---
TEMP_DIR = "temp_intermediate_files"
os.makedirs(TEMP_DIR, exist_ok=True)
print(f"\n--- SETUP PHASE: Created temp directory: {TEMP_DIR} ---")
# 1. Preprocess and save the initial training data
print("\n--- START PHASE: PREPROCESSING ---")
# FIX: Prepend the directory path to the file name
initial_bio_json = os.path.join(TEMP_DIR, "training_data_bio_bboxes.json")
preprocess_labelstudio(args.input, initial_bio_json)
# 2. Augment the dataset with translated bboxes
print("\n--- START PHASE: AUGMENTATION ---")
# FIX: Prepend the directory path to the file name
augmented_bio_json = os.path.join(TEMP_DIR, "augmented_training_data_bio_bboxes.json")
final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
# Clean up the intermediary file (optional)
# import shutil
# shutil.rmtree(TEMP_DIR)
# 3. Load and split augmented dataset
print("\n--- START PHASE: MODEL/DATASET SETUP ---")
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
val_size = int(0.2 * len(dataset))
train_size = len(dataset) - val_size
# Use a fixed seed for reproducibility in split
torch.manual_seed(42)
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
# 4. Initialize and load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Num_labels is based on the updated 'labels' list
model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
os.makedirs("checkpoints", exist_ok=True)
if os.path.exists(ckpt_path):
# NOTE: Loading an old checkpoint will likely fail now because num_labels has changed,
# unless the old checkpoint had the *exact* same number of labels.
# It is recommended to start training from scratch.
# print(f"πŸ”„ Loading checkpoint from {ckpt_path}")
# model.load_state_dict(torch.load(ckpt_path, map_location=device))
print(f"⚠️ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
optimizer = AdamW(model.parameters(), lr=args.lr)
# 5. Training loop
for epoch in range(args.epochs):
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
avg_loss = train_one_epoch(model, train_loader, optimizer, device)
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
precision, recall, f1 = evaluate(model, val_loader, device, id2label)
print(
f"Epoch {epoch + 1}/{args.epochs} | Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
torch.save(model.state_dict(), ckpt_path)
print(f"πŸ’Ύ Model saved at {ckpt_path}")
def run_inference(pdf_path, model_path, output_path):
# LABELS UPDATED: Added SECTION_HEADING and PASSAGE (Must match main)
labels = [
"O",
"B-QUESTION", "I-QUESTION",
"B-OPTION", "I-OPTION",
"B-ANSWER", "I-ANSWER",
"B-SECTION_HEADING", "I-SECTION_HEADING",
"B-PASSAGE", "I-PASSAGE"
]
label2id = {l: i for i, l in enumerate(labels)}
id2label = {i: l for l, i in label2id.items()}
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
# Load the trained model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
try:
model.load_state_dict(torch.load(model_path, map_location=device))
except Exception as e:
print(
f"❌ Error loading model state: {e}. Ensure the model at {model_path} has been successfully trained with the new labels.")
return
model.eval()
# Process PDF with OCR
try:
doc = fitz.open(pdf_path)
except Exception as e:
print(f"❌ Error opening PDF: {e}")
return
all_predictions = []
tesseract_config = '--psm 6'
for page_num in range(len(doc)):
page = doc.load_page(page_num)
# Get a high-resolution image of the page for Tesseract
pix = page.get_pixmap(dpi=300)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Get page dimensions from PyMuPDF
page_width, page_height = page.bound().width, page.bound().height
# Get OCR data (words and bboxes)
ocr_data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT, config=tesseract_config)
words = [word for word in ocr_data['text'] if word.strip()]
# Skip empty pages
if not words:
continue
# Get the scaling factors from the image resolution to the PDF's native resolution
x_scale = page_width / pix.width
y_scale = page_height / pix.height
# Create original pixel bboxes
bboxes_raw = [[
ocr_data['left'][i],
ocr_data['top'][i],
ocr_data['left'][i] + ocr_data['width'][i],
ocr_data['top'][i] + ocr_data['height'][i]
] for i in range(len(ocr_data['text'])) if ocr_data['text'][i].strip()]
# Normalize bboxes to 0-1000 scale using the correct scaling factors
normalized_bboxes = [[
int(1000 * (b[0] * x_scale) / page_width),
int(1000 * (b[1] * y_scale) / page_height),
int(1000 * (b[2] * x_scale) / page_width),
int(1000 * (b[3] * y_scale) / page_height)
] for b in bboxes_raw]
# Tokenize and run inference
inputs = tokenizer(words, boxes=normalized_bboxes, return_tensors="pt", truncation=True).to(device)
with torch.no_grad():
# The model is run on the normalized bboxes
preds = model(**inputs)
# Align predictions back to words
word_ids = inputs.word_ids(batch_index=0)
final_preds = []
previous_word_idx = None
for idx, word_id in enumerate(word_ids):
if word_id is not None and word_id != previous_word_idx:
# The model returns a list of predicted classes for each token
final_preds.append(id2label[preds[0][idx]])
previous_word_idx = word_id
# Prepare structured output
page_results = []
# Tesseract returns word list that is shorter than ocr_data if it contains empty strings.
# We need to use the cleaned 'words' list and its corresponding filtered bboxes.
# Note: We must ensure that the word and bbox lists passed to tokenizer and the filtered
# final_preds list are all correctly aligned with the original ocr_data indices.
# Since 'words' and 'bboxes_raw' are filtered exactly the same way (by word.strip()),
# and 'final_preds' is aligned back to 'words', we can zip them.
for word, bbox, label in zip(words, bboxes_raw, final_preds):
page_results.append({
"word": word,
"bbox": bbox,
"predicted_label": label
})
all_predictions.extend(page_results)
doc.close()
with open(output_path, "w") as f:
json.dump(all_predictions, f, indent=2, ensure_ascii=False)
print(f"βœ… Inference complete. Predictions saved to {output_path}")
# -------------------------
# Step 7: Main Execution (Unchanged)
# -------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
help="Select mode: 'train' or 'infer'")
parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--epochs", type=int, default=5)
parser.add_argument("--lr", type=float, default=5e-5)
parser.add_argument("--max_len", type=int, default=512)
args = parser.parse_args()
if args.mode == "train":
if not args.input:
parser.error("--input is required for 'train' mode.")
main(args)
elif args.mode == "infer":
if not args.input:
parser.error("--input is required for 'infer' mode.")
run_inference(args.input, "checkpoints/layoutlmv3_crf_new_passage.pth", "inference_predictions.json")