Spaces:
Running
Running
Commit
Β·
28f8ac4
1
Parent(s):
d988980
app.py
Browse files
app.py
CHANGED
|
@@ -150,16 +150,177 @@
|
|
| 150 |
# demo.launch(server_port=7860, server_name="0.0.0.0")
|
| 151 |
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
import gradio as gr
|
| 154 |
import subprocess
|
| 155 |
import os
|
| 156 |
import sys
|
| 157 |
from datetime import datetime
|
| 158 |
|
| 159 |
-
#
|
| 160 |
-
TRAINING_SCRIPT = "
|
| 161 |
|
| 162 |
-
# --- CORRECTED MODEL PATH BASED ON
|
| 163 |
MODEL_OUTPUT_DIR = "checkpoints"
|
| 164 |
MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 165 |
MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
|
@@ -181,7 +342,7 @@ def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float,
|
|
| 181 |
yield "β ERROR: Please upload a file.", None
|
| 182 |
return
|
| 183 |
|
| 184 |
-
#
|
| 185 |
input_path = dataset_file.name
|
| 186 |
|
| 187 |
if not input_path.lower().endswith(".json"):
|
|
@@ -195,6 +356,7 @@ def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float,
|
|
| 195 |
# 3. Construct the subprocess command
|
| 196 |
command = [
|
| 197 |
sys.executable,
|
|
|
|
| 198 |
TRAINING_SCRIPT,
|
| 199 |
"--mode", "train",
|
| 200 |
"--input", input_path,
|
|
@@ -306,6 +468,4 @@ with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
|
| 306 |
)
|
| 307 |
|
| 308 |
if __name__ == "__main__":
|
| 309 |
-
# Removed server_port and server_name as they are often unnecessary
|
| 310 |
-
# and sometimes cause issues in managed Space environments.
|
| 311 |
demo.launch()
|
|
|
|
| 150 |
# demo.launch(server_port=7860, server_name="0.0.0.0")
|
| 151 |
|
| 152 |
|
| 153 |
+
# import gradio as gr
|
| 154 |
+
# import subprocess
|
| 155 |
+
# import os
|
| 156 |
+
# import sys
|
| 157 |
+
# from datetime import datetime
|
| 158 |
+
#
|
| 159 |
+
# # The name of your existing training script
|
| 160 |
+
# TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
|
| 161 |
+
#
|
| 162 |
+
# # --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
|
| 163 |
+
# MODEL_OUTPUT_DIR = "checkpoints"
|
| 164 |
+
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 165 |
+
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 166 |
+
#
|
| 167 |
+
#
|
| 168 |
+
# # ----------------------------------------------------------------
|
| 169 |
+
#
|
| 170 |
+
#
|
| 171 |
+
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 172 |
+
# """
|
| 173 |
+
# Handles the Gradio submission and executes the training script using subprocess.
|
| 174 |
+
# """
|
| 175 |
+
#
|
| 176 |
+
# # 1. Setup: Create output directory if it doesn't exist
|
| 177 |
+
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 178 |
+
#
|
| 179 |
+
# # 2. File Handling: Use the temporary path of the uploaded file
|
| 180 |
+
# if dataset_file is None:
|
| 181 |
+
# yield "β ERROR: Please upload a file.", None
|
| 182 |
+
# return
|
| 183 |
+
#
|
| 184 |
+
# # FIX: Gradio returns the path in the .name attribute, not .path
|
| 185 |
+
# input_path = dataset_file.name
|
| 186 |
+
#
|
| 187 |
+
# if not input_path.lower().endswith(".json"):
|
| 188 |
+
# yield "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
|
| 189 |
+
# return
|
| 190 |
+
#
|
| 191 |
+
# progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 192 |
+
#
|
| 193 |
+
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 194 |
+
#
|
| 195 |
+
# # 3. Construct the subprocess command
|
| 196 |
+
# command = [
|
| 197 |
+
# sys.executable,
|
| 198 |
+
# TRAINING_SCRIPT,
|
| 199 |
+
# "--mode", "train",
|
| 200 |
+
# "--input", input_path,
|
| 201 |
+
# "--batch_size", str(batch_size),
|
| 202 |
+
# "--epochs", str(epochs),
|
| 203 |
+
# "--lr", str(lr),
|
| 204 |
+
# "--max_len", str(max_len)
|
| 205 |
+
# ]
|
| 206 |
+
#
|
| 207 |
+
# log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 208 |
+
# yield log_output, None # Yield the command to the log output
|
| 209 |
+
#
|
| 210 |
+
# try:
|
| 211 |
+
# # 4. Run the training script and capture output
|
| 212 |
+
# process = subprocess.Popen(
|
| 213 |
+
# command,
|
| 214 |
+
# stdout=subprocess.PIPE,
|
| 215 |
+
# stderr=subprocess.STDOUT,
|
| 216 |
+
# text=True,
|
| 217 |
+
# bufsize=1
|
| 218 |
+
# )
|
| 219 |
+
#
|
| 220 |
+
# # Stream logs in real-time
|
| 221 |
+
# for line in iter(process.stdout.readline, ""):
|
| 222 |
+
# log_output += line
|
| 223 |
+
# yield log_output, None # Send partial log to Gradio output
|
| 224 |
+
#
|
| 225 |
+
# process.stdout.close()
|
| 226 |
+
# return_code = process.wait()
|
| 227 |
+
#
|
| 228 |
+
# # 5. Check for successful completion
|
| 229 |
+
# if return_code == 0:
|
| 230 |
+
# log_output += "\nβ
TRAINING COMPLETE! Model saved."
|
| 231 |
+
#
|
| 232 |
+
# # 6. Prepare download links based on script's saved path
|
| 233 |
+
# model_exists = os.path.exists(MODEL_FILE_PATH)
|
| 234 |
+
#
|
| 235 |
+
# if model_exists:
|
| 236 |
+
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
|
| 237 |
+
# # Return final log, and the file path for Gradio's download component
|
| 238 |
+
# return log_output, MODEL_FILE_PATH
|
| 239 |
+
# else:
|
| 240 |
+
# log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 241 |
+
# return log_output, None
|
| 242 |
+
# else:
|
| 243 |
+
# log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 244 |
+
# return log_output, None
|
| 245 |
+
#
|
| 246 |
+
# except FileNotFoundError:
|
| 247 |
+
# return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
|
| 248 |
+
# except Exception as e:
|
| 249 |
+
# return f"β An unexpected error occurred: {e}", None
|
| 250 |
+
#
|
| 251 |
+
#
|
| 252 |
+
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 253 |
+
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
| 254 |
+
# gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 255 |
+
# gr.Markdown(
|
| 256 |
+
# """
|
| 257 |
+
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
|
| 258 |
+
#
|
| 259 |
+
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
|
| 260 |
+
# """
|
| 261 |
+
# )
|
| 262 |
+
#
|
| 263 |
+
# with gr.Row():
|
| 264 |
+
# with gr.Column(scale=1):
|
| 265 |
+
# file_input = gr.File(
|
| 266 |
+
# label="1. Upload Label Studio JSON Dataset"
|
| 267 |
+
# )
|
| 268 |
+
#
|
| 269 |
+
# gr.Markdown("---")
|
| 270 |
+
# gr.Markdown("### βοΈ Training Parameters")
|
| 271 |
+
#
|
| 272 |
+
# batch_size_input = gr.Slider(
|
| 273 |
+
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
|
| 274 |
+
# )
|
| 275 |
+
# epochs_input = gr.Slider(
|
| 276 |
+
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
|
| 277 |
+
# )
|
| 278 |
+
# lr_input = gr.Number(
|
| 279 |
+
# value=5e-5, label="Learning Rate (--lr)"
|
| 280 |
+
# )
|
| 281 |
+
# max_len_input = gr.Number(
|
| 282 |
+
# value=512, label="Max Sequence Length (--max_len)"
|
| 283 |
+
# )
|
| 284 |
+
#
|
| 285 |
+
# with gr.Column(scale=2):
|
| 286 |
+
# train_button = gr.Button("π₯ Train Model", variant="primary")
|
| 287 |
+
#
|
| 288 |
+
# log_output = gr.Textbox(
|
| 289 |
+
# label="Training Log Output",
|
| 290 |
+
# lines=20,
|
| 291 |
+
# autoscroll=True,
|
| 292 |
+
# placeholder="Click 'Train Model' to start and see real-time logs..."
|
| 293 |
+
# )
|
| 294 |
+
#
|
| 295 |
+
# gr.Markdown("---")
|
| 296 |
+
# gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
|
| 297 |
+
#
|
| 298 |
+
# # Only providing the download link for the saved .pth model file
|
| 299 |
+
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
|
| 300 |
+
#
|
| 301 |
+
# # Define the action when the button is clicked
|
| 302 |
+
# train_button.click(
|
| 303 |
+
# fn=train_model,
|
| 304 |
+
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 305 |
+
# outputs=[log_output, model_download]
|
| 306 |
+
# )
|
| 307 |
+
#
|
| 308 |
+
# if __name__ == "__main__":
|
| 309 |
+
# # Removed server_port and server_name as they are often unnecessary
|
| 310 |
+
# # and sometimes cause issues in managed Space environments.
|
| 311 |
+
# demo.launch()
|
| 312 |
+
|
| 313 |
+
|
| 314 |
import gradio as gr
|
| 315 |
import subprocess
|
| 316 |
import os
|
| 317 |
import sys
|
| 318 |
from datetime import datetime
|
| 319 |
|
| 320 |
+
# FIX: Update the script name to the correct one you uploaded
|
| 321 |
+
TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
|
| 322 |
|
| 323 |
+
# --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
|
| 324 |
MODEL_OUTPUT_DIR = "checkpoints"
|
| 325 |
MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 326 |
MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
|
|
|
| 342 |
yield "β ERROR: Please upload a file.", None
|
| 343 |
return
|
| 344 |
|
| 345 |
+
# Using .name (Corrected in previous steps)
|
| 346 |
input_path = dataset_file.name
|
| 347 |
|
| 348 |
if not input_path.lower().endswith(".json"):
|
|
|
|
| 356 |
# 3. Construct the subprocess command
|
| 357 |
command = [
|
| 358 |
sys.executable,
|
| 359 |
+
# Now uses the corrected TRAINING_SCRIPT variable
|
| 360 |
TRAINING_SCRIPT,
|
| 361 |
"--mode", "train",
|
| 362 |
"--input", input_path,
|
|
|
|
| 468 |
)
|
| 469 |
|
| 470 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 471 |
demo.launch()
|