Spaces:
Running
Running
Update HF_LayoutLM_with_Passage.py
Browse files- HF_LayoutLM_with_Passage.py +0 -763
HF_LayoutLM_with_Passage.py
CHANGED
|
@@ -1,766 +1,3 @@
|
|
| 1 |
-
#
|
| 2 |
-
# import json
|
| 3 |
-
# import argparse
|
| 4 |
-
# import os
|
| 5 |
-
# import random
|
| 6 |
-
# import torch
|
| 7 |
-
# import torch.nn as nn
|
| 8 |
-
# from torch.utils.data import Dataset, DataLoader, random_split
|
| 9 |
-
# from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
|
| 10 |
-
# from TorchCRF import CRF
|
| 11 |
-
# from torch.optim import AdamW
|
| 12 |
-
# from tqdm import tqdm
|
| 13 |
-
# from sklearn.metrics import precision_recall_fscore_support
|
| 14 |
-
#
|
| 15 |
-
#
|
| 16 |
-
# # --- Configuration for Augmentation ---
|
| 17 |
-
# MAX_BBOX_DIMENSION = 999
|
| 18 |
-
# MAX_SHIFT = 30
|
| 19 |
-
# AUGMENTATION_FACTOR = 1
|
| 20 |
-
#
|
| 21 |
-
#
|
| 22 |
-
# # -------------------------------------
|
| 23 |
-
#
|
| 24 |
-
#
|
| 25 |
-
# # -------------------------
|
| 26 |
-
# # Step 1: Preprocessing (Label Studio β BIO + bboxes)
|
| 27 |
-
# # -------------------------
|
| 28 |
-
# def preprocess_labelstudio(input_path, output_path):
|
| 29 |
-
# with open(input_path, "r", encoding="utf-8") as f:
|
| 30 |
-
# data = json.load(f)
|
| 31 |
-
#
|
| 32 |
-
# processed = []
|
| 33 |
-
# total_items = len(data) # Added for potential verbose logging
|
| 34 |
-
# print(f"π Starting preprocessing of {total_items} documents...")
|
| 35 |
-
#
|
| 36 |
-
# for item in data:
|
| 37 |
-
# words = item["data"]["original_words"]
|
| 38 |
-
# bboxes = item["data"]["original_bboxes"]
|
| 39 |
-
# labels = ["O"] * len(words)
|
| 40 |
-
#
|
| 41 |
-
# if "annotations" in item:
|
| 42 |
-
# for ann in item["annotations"]:
|
| 43 |
-
# for res in ann["result"]:
|
| 44 |
-
# # Check if the result item is a span annotation
|
| 45 |
-
# if "value" in res and "labels" in res["value"]:
|
| 46 |
-
# text = res["value"]["text"]
|
| 47 |
-
# tag = res["value"]["labels"][0]
|
| 48 |
-
# # Some tokenizers may split words, so we must find a consecutive word match.
|
| 49 |
-
# text_tokens = text.split()
|
| 50 |
-
#
|
| 51 |
-
# for i in range(len(words) - len(text_tokens) + 1):
|
| 52 |
-
# if words[i:i + len(text_tokens)] == text_tokens:
|
| 53 |
-
# labels[i] = f"B-{tag}"
|
| 54 |
-
# for j in range(1, len(text_tokens)):
|
| 55 |
-
# labels[i + j] = f"I-{tag}"
|
| 56 |
-
# break # Move to next annotation if a match is found
|
| 57 |
-
#
|
| 58 |
-
# processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
|
| 59 |
-
#
|
| 60 |
-
# with open(output_path, "w", encoding="utf-8") as f:
|
| 61 |
-
# json.dump(processed, f, indent=2, ensure_ascii=False)
|
| 62 |
-
#
|
| 63 |
-
# print(f"β
Preprocessed data saved to {output_path}")
|
| 64 |
-
# return output_path
|
| 65 |
-
#
|
| 66 |
-
#
|
| 67 |
-
# # -------------------------
|
| 68 |
-
# # Step 1.5: Bounding Box Augmentation
|
| 69 |
-
# # -------------------------
|
| 70 |
-
#
|
| 71 |
-
# def translate_bbox(bbox, shift_x, shift_y):
|
| 72 |
-
# """
|
| 73 |
-
# Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
|
| 74 |
-
# and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
|
| 75 |
-
# """
|
| 76 |
-
# x_min, y_min, x_max, y_max = bbox
|
| 77 |
-
#
|
| 78 |
-
# new_x_min = x_min + shift_x
|
| 79 |
-
# new_y_min = y_min + shift_y
|
| 80 |
-
# new_x_max = x_max + shift_x
|
| 81 |
-
# new_y_max = y_max + shift_y
|
| 82 |
-
#
|
| 83 |
-
# # Clamp the new coordinates
|
| 84 |
-
# new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
|
| 85 |
-
# new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
|
| 86 |
-
# new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
|
| 87 |
-
# new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
|
| 88 |
-
#
|
| 89 |
-
# # Safety check
|
| 90 |
-
# if new_x_min > new_x_max: new_x_min = new_x_max
|
| 91 |
-
# if new_y_min > new_y_max: new_y_min = new_y_max
|
| 92 |
-
#
|
| 93 |
-
# return [new_x_min, new_y_min, new_x_max, new_y_max]
|
| 94 |
-
#
|
| 95 |
-
#
|
| 96 |
-
# def augment_sample(sample):
|
| 97 |
-
# """
|
| 98 |
-
# Generates a new sample by translating all bounding boxes.
|
| 99 |
-
# """
|
| 100 |
-
# shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
|
| 101 |
-
# shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
|
| 102 |
-
#
|
| 103 |
-
# new_sample = sample.copy()
|
| 104 |
-
#
|
| 105 |
-
# # Ensure tokens and labels are copied (they remain unchanged)
|
| 106 |
-
# new_sample["tokens"] = sample["tokens"]
|
| 107 |
-
# new_sample["labels"] = sample["labels"]
|
| 108 |
-
#
|
| 109 |
-
# # Translate all bounding boxes
|
| 110 |
-
# new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
|
| 111 |
-
# new_sample["bboxes"] = new_bboxes
|
| 112 |
-
#
|
| 113 |
-
# return new_sample
|
| 114 |
-
#
|
| 115 |
-
#
|
| 116 |
-
# def augment_and_save_dataset(input_json_path, output_json_path):
|
| 117 |
-
# """
|
| 118 |
-
# Loads preprocessed data, performs augmentation, and saves the result.
|
| 119 |
-
# """
|
| 120 |
-
# print(f"π Loading preprocessed data from {input_json_path} for augmentation...")
|
| 121 |
-
# with open(input_json_path, 'r', encoding="utf-8") as f:
|
| 122 |
-
# training_data = json.load(f)
|
| 123 |
-
#
|
| 124 |
-
# augmented_data = []
|
| 125 |
-
# original_count = len(training_data)
|
| 126 |
-
#
|
| 127 |
-
# print(f"π Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
|
| 128 |
-
#
|
| 129 |
-
# for i, original_sample in enumerate(training_data):
|
| 130 |
-
# # 1. Add the original sample
|
| 131 |
-
# augmented_data.append(original_sample)
|
| 132 |
-
#
|
| 133 |
-
# # 2. Generate augmented samples
|
| 134 |
-
# for _ in range(AUGMENTATION_FACTOR):
|
| 135 |
-
# if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
|
| 136 |
-
# augmented_data.append(augment_sample(original_sample))
|
| 137 |
-
# else:
|
| 138 |
-
# print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
|
| 139 |
-
#
|
| 140 |
-
# augmented_count = len(augmented_data)
|
| 141 |
-
# print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
|
| 142 |
-
#
|
| 143 |
-
# # Save the augmented dataset
|
| 144 |
-
# with open(output_json_path, 'w', encoding="utf-8") as f:
|
| 145 |
-
# json.dump(augmented_data, f, indent=2, ensure_ascii=False)
|
| 146 |
-
#
|
| 147 |
-
# print(f"β
Augmented data saved to {output_json_path}")
|
| 148 |
-
# return output_json_path
|
| 149 |
-
#
|
| 150 |
-
#
|
| 151 |
-
# # -------------------------
|
| 152 |
-
# # Step 2: Dataset Class (Unchanged)
|
| 153 |
-
# # -------------------------
|
| 154 |
-
# class LayoutDataset(Dataset):
|
| 155 |
-
# def __init__(self, json_path, tokenizer, label2id, max_len=512):
|
| 156 |
-
# with open(json_path, "r", encoding="utf-8") as f:
|
| 157 |
-
# self.data = json.load(f)
|
| 158 |
-
# self.tokenizer = tokenizer
|
| 159 |
-
# self.label2id = label2id
|
| 160 |
-
# self.max_len = max_len
|
| 161 |
-
#
|
| 162 |
-
# def __len__(self):
|
| 163 |
-
# return len(self.data)
|
| 164 |
-
#
|
| 165 |
-
# def __getitem__(self, idx):
|
| 166 |
-
# item = self.data[idx]
|
| 167 |
-
# words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
|
| 168 |
-
#
|
| 169 |
-
# # Tokenize
|
| 170 |
-
# encodings = self.tokenizer(
|
| 171 |
-
# words,
|
| 172 |
-
# boxes=bboxes,
|
| 173 |
-
# padding="max_length",
|
| 174 |
-
# truncation=True,
|
| 175 |
-
# max_length=self.max_len,
|
| 176 |
-
# return_offsets_mapping=True,
|
| 177 |
-
# return_tensors="pt"
|
| 178 |
-
# )
|
| 179 |
-
#
|
| 180 |
-
# # Align labels to word pieces
|
| 181 |
-
# word_ids = encodings.word_ids(batch_index=0)
|
| 182 |
-
# label_ids = []
|
| 183 |
-
# for word_id in word_ids:
|
| 184 |
-
# if word_id is None:
|
| 185 |
-
# label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
|
| 186 |
-
# else:
|
| 187 |
-
# label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
|
| 188 |
-
#
|
| 189 |
-
# encodings.pop("offset_mapping")
|
| 190 |
-
# encodings["labels"] = torch.tensor(label_ids)
|
| 191 |
-
#
|
| 192 |
-
# return {key: val.squeeze(0) for key, val in encodings.items()}
|
| 193 |
-
#
|
| 194 |
-
#
|
| 195 |
-
# # -------------------------
|
| 196 |
-
# # Step 3: Model Architecture (Unchanged)
|
| 197 |
-
# # -------------------------
|
| 198 |
-
# class LayoutLMv3CRF(nn.Module):
|
| 199 |
-
# def __init__(self, model_name, num_labels):
|
| 200 |
-
# super().__init__()
|
| 201 |
-
# self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
|
| 202 |
-
# # self.layoutlm = LayoutLMv3Model.from_pretrained("heerjtdev/edugenius")
|
| 203 |
-
# self.dropout = nn.Dropout(0.1)
|
| 204 |
-
# self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
|
| 205 |
-
# self.crf = CRF(num_labels)
|
| 206 |
-
#
|
| 207 |
-
# def forward(self, input_ids, bbox, attention_mask, labels=None):
|
| 208 |
-
# outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
|
| 209 |
-
# sequence_output = self.dropout(outputs.last_hidden_state)
|
| 210 |
-
# emissions = self.classifier(sequence_output)
|
| 211 |
-
#
|
| 212 |
-
# if labels is not None:
|
| 213 |
-
# # Training mode: calculate loss
|
| 214 |
-
# log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
|
| 215 |
-
# return -log_likelihood.mean()
|
| 216 |
-
# else:
|
| 217 |
-
# # Inference mode: decode best path
|
| 218 |
-
# best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
|
| 219 |
-
# return best_paths
|
| 220 |
-
#
|
| 221 |
-
#
|
| 222 |
-
# # -------------------------
|
| 223 |
-
# # Step 4: Training + Evaluation (Unchanged)
|
| 224 |
-
# # -------------------------
|
| 225 |
-
# def train_one_epoch(model, dataloader, optimizer, device):
|
| 226 |
-
# model.train()
|
| 227 |
-
# total_loss = 0
|
| 228 |
-
# for batch in tqdm(dataloader, desc="Training"):
|
| 229 |
-
# batch = {k: v.to(device) for k, v in batch.items()}
|
| 230 |
-
# labels = batch.pop("labels")
|
| 231 |
-
# optimizer.zero_grad()
|
| 232 |
-
# loss = model(**batch, labels=labels)
|
| 233 |
-
# loss.backward()
|
| 234 |
-
# optimizer.step()
|
| 235 |
-
# total_loss += loss.item()
|
| 236 |
-
# return total_loss / len(dataloader)
|
| 237 |
-
#
|
| 238 |
-
#
|
| 239 |
-
# def evaluate(model, dataloader, device, id2label):
|
| 240 |
-
# model.eval()
|
| 241 |
-
# all_preds, all_labels = [], []
|
| 242 |
-
# with torch.no_grad():
|
| 243 |
-
# for batch in tqdm(dataloader, desc="Evaluating"):
|
| 244 |
-
# batch = {k: v.to(device) for k, v in batch.items()}
|
| 245 |
-
# labels = batch.pop("labels").cpu().numpy()
|
| 246 |
-
# preds = model(**batch)
|
| 247 |
-
# for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
|
| 248 |
-
# valid = mask == 1
|
| 249 |
-
# l = l[valid].tolist()
|
| 250 |
-
# all_labels.extend(l)
|
| 251 |
-
# all_preds.extend(p[:len(l)])
|
| 252 |
-
#
|
| 253 |
-
# # Exclude the "O" label and other special tokens if necessary, but using 'micro' average
|
| 254 |
-
# # on all valid tokens is typically fine for the initial evaluation.
|
| 255 |
-
# precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
|
| 256 |
-
# return precision, recall, f1
|
| 257 |
-
#
|
| 258 |
-
#
|
| 259 |
-
# # -------------------------
|
| 260 |
-
# # Step 5: Main Pipeline (Training) - MODIFIED LABELS + FILE PATH FIX
|
| 261 |
-
# # -------------------------
|
| 262 |
-
# def main(args):
|
| 263 |
-
# # LABELS UPDATED: Added SECTION_HEADING and PASSAGE
|
| 264 |
-
# labels = [
|
| 265 |
-
# "O",
|
| 266 |
-
# "B-QUESTION", "I-QUESTION",
|
| 267 |
-
# "B-OPTION", "I-OPTION",
|
| 268 |
-
# "B-ANSWER", "I-ANSWER",
|
| 269 |
-
# "B-SECTION_HEADING", "I-SECTION_HEADING",
|
| 270 |
-
# "B-PASSAGE", "I-PASSAGE"
|
| 271 |
-
# ]
|
| 272 |
-
# label2id = {l: i for i, l in enumerate(labels)}
|
| 273 |
-
# id2label = {i: l for l, i in label2id.items()}
|
| 274 |
-
#
|
| 275 |
-
# # --- FIX for FileNotFoundError: Use a temporary directory for intermediate files ---
|
| 276 |
-
# TEMP_DIR = "temp_intermediate_files"
|
| 277 |
-
# os.makedirs(TEMP_DIR, exist_ok=True)
|
| 278 |
-
# print(f"\n--- SETUP PHASE: Created temp directory: {TEMP_DIR} ---")
|
| 279 |
-
#
|
| 280 |
-
# # 1. Preprocess and save the initial training data
|
| 281 |
-
# print("\n--- START PHASE: PREPROCESSING ---")
|
| 282 |
-
#
|
| 283 |
-
# # FIX: Prepend the directory path to the file name
|
| 284 |
-
# initial_bio_json = os.path.join(TEMP_DIR, "training_data_bio_bboxes.json")
|
| 285 |
-
# preprocess_labelstudio(args.input, initial_bio_json)
|
| 286 |
-
#
|
| 287 |
-
# # 2. Augment the dataset with translated bboxes
|
| 288 |
-
# print("\n--- START PHASE: AUGMENTATION ---")
|
| 289 |
-
#
|
| 290 |
-
# # FIX: Prepend the directory path to the file name
|
| 291 |
-
# augmented_bio_json = os.path.join(TEMP_DIR, "augmented_training_data_bio_bboxes.json")
|
| 292 |
-
# final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
|
| 293 |
-
#
|
| 294 |
-
# # Clean up the intermediary file (optional)
|
| 295 |
-
# # import shutil
|
| 296 |
-
# # shutil.rmtree(TEMP_DIR)
|
| 297 |
-
#
|
| 298 |
-
# # 3. Load and split augmented dataset
|
| 299 |
-
# print("\n--- START PHASE: MODEL/DATASET SETUP ---")
|
| 300 |
-
# #MODEL_ID = "heerjtdev/edugenius"
|
| 301 |
-
# tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
|
| 302 |
-
# #tokenizer = LayoutLMv3TokenizerFast.from_pretrained(MODEL_ID)
|
| 303 |
-
#
|
| 304 |
-
# dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
|
| 305 |
-
# val_size = int(0.2 * len(dataset))
|
| 306 |
-
# train_size = len(dataset) - val_size
|
| 307 |
-
#
|
| 308 |
-
# # Use a fixed seed for reproducibility in split
|
| 309 |
-
# torch.manual_seed(42)
|
| 310 |
-
# train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
| 311 |
-
# train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
|
| 312 |
-
# val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
|
| 313 |
-
#
|
| 314 |
-
# # 4. Initialize and load model
|
| 315 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 316 |
-
# print(f"Using device: {device}")
|
| 317 |
-
# # Num_labels is based on the updated 'labels' list
|
| 318 |
-
# model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
|
| 319 |
-
# # model = LayoutLMv3CRF(MODEL_ID, num_labels=len(labels)).to(device)
|
| 320 |
-
# ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
|
| 321 |
-
# os.makedirs("checkpoints", exist_ok=True)
|
| 322 |
-
# if os.path.exists(ckpt_path):
|
| 323 |
-
# # NOTE: Loading an old checkpoint will likely fail now because num_labels has changed,
|
| 324 |
-
# # unless the old checkpoint had the *exact* same number of labels.
|
| 325 |
-
# # It is recommended to start training from scratch.
|
| 326 |
-
# # print(f"π Loading checkpoint from {ckpt_path}")
|
| 327 |
-
# # model.load_state_dict(torch.load(ckpt_path, map_location=device))
|
| 328 |
-
# print(f"β οΈ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
|
| 329 |
-
#
|
| 330 |
-
# optimizer = AdamW(model.parameters(), lr=args.lr)
|
| 331 |
-
#
|
| 332 |
-
# # 5. Training loop
|
| 333 |
-
# for epoch in range(args.epochs):
|
| 334 |
-
# print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
|
| 335 |
-
# avg_loss = train_one_epoch(model, train_loader, optimizer, device)
|
| 336 |
-
#
|
| 337 |
-
# print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
|
| 338 |
-
# precision, recall, f1 = evaluate(model, val_loader, device, id2label)
|
| 339 |
-
#
|
| 340 |
-
# print(
|
| 341 |
-
# f"Epoch {epoch + 1}/{args.epochs} | Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
|
| 342 |
-
# torch.save(model.state_dict(), ckpt_path)
|
| 343 |
-
# print(f"πΎ Model saved at {ckpt_path}")
|
| 344 |
-
#
|
| 345 |
-
#
|
| 346 |
-
#
|
| 347 |
-
#
|
| 348 |
-
# # -------------------------
|
| 349 |
-
# # Step 7: Main Execution (Unchanged)
|
| 350 |
-
# # -------------------------
|
| 351 |
-
# if __name__ == "__main__":
|
| 352 |
-
# parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
|
| 353 |
-
# parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
|
| 354 |
-
# help="Select mode: 'train' or 'infer'")
|
| 355 |
-
# parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
|
| 356 |
-
# parser.add_argument("--batch_size", type=int, default=4)
|
| 357 |
-
# parser.add_argument("--epochs", type=int, default=5)
|
| 358 |
-
# parser.add_argument("--lr", type=float, default=5e-5)
|
| 359 |
-
# parser.add_argument("--max_len", type=int, default=512)
|
| 360 |
-
# args = parser.parse_args()
|
| 361 |
-
#
|
| 362 |
-
# if args.mode == "train":
|
| 363 |
-
# if not args.input:
|
| 364 |
-
# parser.error("--input is required for 'train' mode.")
|
| 365 |
-
# main(args)
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
# import json
|
| 369 |
-
# import argparse
|
| 370 |
-
# import os
|
| 371 |
-
# import random
|
| 372 |
-
# import torch
|
| 373 |
-
# import torch.nn as nn
|
| 374 |
-
# from torch.utils.data import Dataset, DataLoader, random_split
|
| 375 |
-
# # Using LayoutLMv3TokenizerFast, LayoutLMv3Model
|
| 376 |
-
# from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
|
| 377 |
-
# from transformers.utils import cached_file
|
| 378 |
-
# from safetensors.torch import load_file
|
| 379 |
-
# from TorchCRF import CRF
|
| 380 |
-
# from torch.optim import AdamW
|
| 381 |
-
# from tqdm import tqdm
|
| 382 |
-
# from sklearn.metrics import precision_recall_fscore_support
|
| 383 |
-
#
|
| 384 |
-
# # --- Configuration for Augmentation ---
|
| 385 |
-
# MAX_BBOX_DIMENSION = 1000
|
| 386 |
-
# MAX_SHIFT = 30
|
| 387 |
-
# AUGMENTATION_FACTOR = 1
|
| 388 |
-
#
|
| 389 |
-
# # -------------------------------------
|
| 390 |
-
#
|
| 391 |
-
# # --- Hugging Face Model ID ---
|
| 392 |
-
# HF_MODEL_ID = "heerjtdev/edugenius"
|
| 393 |
-
#
|
| 394 |
-
#
|
| 395 |
-
# # -----------------------------
|
| 396 |
-
#
|
| 397 |
-
#
|
| 398 |
-
# # -------------------------
|
| 399 |
-
# # Step 1: Preprocessing (Label Studio β BIO + bboxes)
|
| 400 |
-
# # -------------------------
|
| 401 |
-
# def preprocess_labelstudio(input_path, output_path):
|
| 402 |
-
# with open(input_path, "r", encoding="utf-8") as f:
|
| 403 |
-
# data = json.load(f)
|
| 404 |
-
#
|
| 405 |
-
# processed = []
|
| 406 |
-
# total_items = len(data) # Added for potential verbose logging
|
| 407 |
-
# print(f"π Starting preprocessing of {total_items} documents...")
|
| 408 |
-
#
|
| 409 |
-
# for item in data:
|
| 410 |
-
# words = item["data"]["original_words"]
|
| 411 |
-
# bboxes = item["data"]["original_bboxes"]
|
| 412 |
-
# labels = ["O"] * len(words)
|
| 413 |
-
#
|
| 414 |
-
# if "annotations" in item:
|
| 415 |
-
# for ann in item["annotations"]:
|
| 416 |
-
# for res in ann["result"]:
|
| 417 |
-
# # Check if the result item is a span annotation
|
| 418 |
-
# if "value" in res and "labels" in res["value"]:
|
| 419 |
-
# text = res["value"]["text"]
|
| 420 |
-
# tag = res["value"]["labels"][0]
|
| 421 |
-
# # Some tokenizers may split words, so we must find a consecutive word match.
|
| 422 |
-
# text_tokens = text.split()
|
| 423 |
-
#
|
| 424 |
-
# for i in range(len(words) - len(text_tokens) + 1):
|
| 425 |
-
# if words[i:i + len(text_tokens)] == text_tokens:
|
| 426 |
-
# labels[i] = f"B-{tag}"
|
| 427 |
-
# for j in range(1, len(text_tokens)):
|
| 428 |
-
# labels[i + j] = f"I-{tag}"
|
| 429 |
-
# break # Move to next annotation if a match is found
|
| 430 |
-
#
|
| 431 |
-
# processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
|
| 432 |
-
#
|
| 433 |
-
# with open(output_path, "w", encoding="utf-8") as f:
|
| 434 |
-
# json.dump(processed, f, indent=2, ensure_ascii=False)
|
| 435 |
-
#
|
| 436 |
-
# print(f"β
Preprocessed data saved to {output_path}")
|
| 437 |
-
# return output_path
|
| 438 |
-
#
|
| 439 |
-
#
|
| 440 |
-
# # -------------------------
|
| 441 |
-
# # Step 1.5: Bounding Box Augmentation
|
| 442 |
-
# # -------------------------
|
| 443 |
-
#
|
| 444 |
-
# def translate_bbox(bbox, shift_x, shift_y):
|
| 445 |
-
# """
|
| 446 |
-
# Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
|
| 447 |
-
# and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
|
| 448 |
-
# """
|
| 449 |
-
# x_min, y_min, x_max, y_max = bbox
|
| 450 |
-
#
|
| 451 |
-
# new_x_min = x_min + shift_x
|
| 452 |
-
# new_y_min = y_min + shift_y
|
| 453 |
-
# new_x_max = x_max + shift_x
|
| 454 |
-
# new_y_max = y_max + shift_y
|
| 455 |
-
#
|
| 456 |
-
# # Clamp the new coordinates
|
| 457 |
-
# new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
|
| 458 |
-
# new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
|
| 459 |
-
# new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
|
| 460 |
-
# new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
|
| 461 |
-
#
|
| 462 |
-
# # Safety check
|
| 463 |
-
# if new_x_min > new_x_max: new_x_min = new_x_max
|
| 464 |
-
# if new_y_min > new_y_max: new_y_min = new_y_max
|
| 465 |
-
#
|
| 466 |
-
# return [new_x_min, new_y_min, new_x_max, new_y_max]
|
| 467 |
-
#
|
| 468 |
-
#
|
| 469 |
-
# def augment_sample(sample):
|
| 470 |
-
# """
|
| 471 |
-
# Generates a new sample by translating all bounding boxes.
|
| 472 |
-
# """
|
| 473 |
-
# shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
|
| 474 |
-
# shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
|
| 475 |
-
#
|
| 476 |
-
# new_sample = sample.copy()
|
| 477 |
-
#
|
| 478 |
-
# # Ensure tokens and labels are copied (they remain unchanged)
|
| 479 |
-
# new_sample["tokens"] = sample["tokens"]
|
| 480 |
-
# new_sample["labels"] = sample["labels"]
|
| 481 |
-
#
|
| 482 |
-
# # Translate all bounding boxes
|
| 483 |
-
# new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
|
| 484 |
-
# new_sample["bboxes"] = new_bboxes
|
| 485 |
-
#
|
| 486 |
-
# return new_sample
|
| 487 |
-
#
|
| 488 |
-
#
|
| 489 |
-
# def augment_and_save_dataset(input_json_path, output_json_path):
|
| 490 |
-
# """
|
| 491 |
-
# Loads preprocessed data, performs augmentation, and saves the result.
|
| 492 |
-
# """
|
| 493 |
-
# print(f"π Loading preprocessed data from {input_json_path} for augmentation...")
|
| 494 |
-
# with open(input_json_path, 'r', encoding="utf-8") as f:
|
| 495 |
-
# training_data = json.load(f)
|
| 496 |
-
#
|
| 497 |
-
# augmented_data = []
|
| 498 |
-
# original_count = len(training_data)
|
| 499 |
-
#
|
| 500 |
-
# print(f"π Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
|
| 501 |
-
#
|
| 502 |
-
# for i, original_sample in enumerate(training_data):
|
| 503 |
-
# # 1. Add the original sample
|
| 504 |
-
# augmented_data.append(original_sample)
|
| 505 |
-
#
|
| 506 |
-
# # 2. Generate augmented samples
|
| 507 |
-
# for _ in range(AUGMENTATION_FACTOR):
|
| 508 |
-
# if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
|
| 509 |
-
# augmented_data.append(augment_sample(original_sample))
|
| 510 |
-
# else:
|
| 511 |
-
# print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
|
| 512 |
-
#
|
| 513 |
-
# augmented_count = len(augmented_data)
|
| 514 |
-
# print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
|
| 515 |
-
#
|
| 516 |
-
# # Save the augmented dataset
|
| 517 |
-
# with open(output_json_path, 'w', encoding="utf-8") as f:
|
| 518 |
-
# json.dump(augmented_data, f, indent=2, ensure_ascii=False)
|
| 519 |
-
#
|
| 520 |
-
# print(f"β
Augmented data saved to {output_json_path}")
|
| 521 |
-
# return output_json_path
|
| 522 |
-
#
|
| 523 |
-
#
|
| 524 |
-
# # -------------------------
|
| 525 |
-
# # Step 2: Dataset Class
|
| 526 |
-
# # -------------------------
|
| 527 |
-
# class LayoutDataset(Dataset):
|
| 528 |
-
# def __init__(self, json_path, tokenizer, label2id, max_len=512):
|
| 529 |
-
# with open(json_path, "r", encoding="utf-8") as f:
|
| 530 |
-
# self.data = json.load(f)
|
| 531 |
-
# self.tokenizer = tokenizer
|
| 532 |
-
# self.label2id = label2id
|
| 533 |
-
# self.max_len = max_len
|
| 534 |
-
#
|
| 535 |
-
# def __len__(self):
|
| 536 |
-
# return len(self.data)
|
| 537 |
-
#
|
| 538 |
-
# def __getitem__(self, idx):
|
| 539 |
-
# item = self.data[idx]
|
| 540 |
-
# words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
|
| 541 |
-
#
|
| 542 |
-
# # Tokenize
|
| 543 |
-
# encodings = self.tokenizer(
|
| 544 |
-
# words,
|
| 545 |
-
# boxes=bboxes,
|
| 546 |
-
# padding="max_length",
|
| 547 |
-
# truncation=True,
|
| 548 |
-
# max_length=self.max_len,
|
| 549 |
-
# return_offsets_mapping=True,
|
| 550 |
-
# return_tensors="pt"
|
| 551 |
-
# )
|
| 552 |
-
#
|
| 553 |
-
# # Align labels to word pieces
|
| 554 |
-
# word_ids = encodings.word_ids(batch_index=0)
|
| 555 |
-
# label_ids = []
|
| 556 |
-
# for word_id in word_ids:
|
| 557 |
-
# if word_id is None:
|
| 558 |
-
# label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
|
| 559 |
-
# else:
|
| 560 |
-
# label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
|
| 561 |
-
#
|
| 562 |
-
# encodings.pop("offset_mapping")
|
| 563 |
-
# encodings["labels"] = torch.tensor(label_ids)
|
| 564 |
-
#
|
| 565 |
-
# return {key: val.squeeze(0) for key, val in encodings.items()}
|
| 566 |
-
#
|
| 567 |
-
#
|
| 568 |
-
# # -------------------------
|
| 569 |
-
# # Step 3: Model Architecture (PATCHED TO LOAD WEIGHTS CORRECTLY)
|
| 570 |
-
# # -------------------------
|
| 571 |
-
# class LayoutLMv3CRF(nn.Module):
|
| 572 |
-
# def __init__(self, model_name, num_labels, device):
|
| 573 |
-
# super().__init__()
|
| 574 |
-
#
|
| 575 |
-
# # 1. Initialize the LayoutLMv3 model using the base class
|
| 576 |
-
# # We start by initializing from the base configuration to ensure all weights are present
|
| 577 |
-
# self.layoutlm = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base")
|
| 578 |
-
#
|
| 579 |
-
# # 2. Try to load the fine-tuned weights from the Hugging Face Hub/Cache
|
| 580 |
-
# try:
|
| 581 |
-
# # This resolves the path to the downloaded model.safetensors in the cache
|
| 582 |
-
# # Assumes you have renamed your file on the Hugging Face Hub to 'model.safetensors'
|
| 583 |
-
# weights_path = cached_file(model_name, "model.safetensors")
|
| 584 |
-
# fine_tuned_weights = load_file(weights_path)
|
| 585 |
-
#
|
| 586 |
-
# # 3. Strip the Mismatching Prefix (Assuming 'layoutlm.' prefix from a previous wrapper)
|
| 587 |
-
# new_state_dict = {}
|
| 588 |
-
# prefix_to_strip = "layoutlm."
|
| 589 |
-
#
|
| 590 |
-
# for key, value in fine_tuned_weights.items():
|
| 591 |
-
# if key.startswith(prefix_to_strip):
|
| 592 |
-
# new_key = key[len(prefix_to_strip):]
|
| 593 |
-
# new_state_dict[new_key] = value
|
| 594 |
-
# else:
|
| 595 |
-
# new_state_dict[key] = value
|
| 596 |
-
#
|
| 597 |
-
# # 4. Load the fixed state dictionary into the LayoutLMv3Model
|
| 598 |
-
# # strict=False allows us to ignore classifier/CRF weights not in LayoutLMv3Model
|
| 599 |
-
# print("π Successfully loaded and stripped keys. Loading base LayoutLMv3 weights...")
|
| 600 |
-
#
|
| 601 |
-
# # Load only the weights for the transformer body
|
| 602 |
-
# missing_keys, unexpected_keys = self.layoutlm.load_state_dict(new_state_dict, strict=False)
|
| 603 |
-
#
|
| 604 |
-
# print(f"Weights loading done: {len(missing_keys)} missing, {len(unexpected_keys)} unexpected keys.")
|
| 605 |
-
#
|
| 606 |
-
# except Exception as e:
|
| 607 |
-
# print(f"β Fine-tuned weights could not be loaded directly and mapped. Starting with random weights.")
|
| 608 |
-
# print(f"Error: {e}")
|
| 609 |
-
# # Fallback: Load the LayoutLMv3 component directly from the Hub ID (will result in random weights for layers)
|
| 610 |
-
# self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
|
| 611 |
-
#
|
| 612 |
-
# # 5. Initialize the new heads (CRF layer and Classifier)
|
| 613 |
-
# self.dropout = nn.Dropout(0.1)
|
| 614 |
-
# self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
|
| 615 |
-
# self.crf = CRF(num_labels)
|
| 616 |
-
#
|
| 617 |
-
# def forward(self, input_ids, bbox, attention_mask, labels=None):
|
| 618 |
-
# outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
|
| 619 |
-
# sequence_output = self.dropout(outputs.last_hidden_state)
|
| 620 |
-
# emissions = self.classifier(sequence_output)
|
| 621 |
-
#
|
| 622 |
-
# if labels is not None:
|
| 623 |
-
# # Training mode: calculate loss
|
| 624 |
-
# log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
|
| 625 |
-
# return -log_likelihood.mean()
|
| 626 |
-
# else:
|
| 627 |
-
# # Inference mode: decode best path
|
| 628 |
-
# best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
|
| 629 |
-
# return best_paths
|
| 630 |
-
#
|
| 631 |
-
#
|
| 632 |
-
# # -------------------------
|
| 633 |
-
# # Step 4: Training + Evaluation
|
| 634 |
-
# # -------------------------
|
| 635 |
-
# def train_one_epoch(model, dataloader, optimizer, device):
|
| 636 |
-
# model.train()
|
| 637 |
-
# total_loss = 0
|
| 638 |
-
# for batch in tqdm(dataloader, desc="Training"):
|
| 639 |
-
# batch = {k: v.to(device) for k, v in batch.items()}
|
| 640 |
-
# labels = batch.pop("labels")
|
| 641 |
-
# optimizer.zero_grad()
|
| 642 |
-
# loss = model(**batch, labels=labels)
|
| 643 |
-
# loss.backward()
|
| 644 |
-
# optimizer.step()
|
| 645 |
-
# total_loss += loss.item()
|
| 646 |
-
# return total_loss / len(dataloader)
|
| 647 |
-
#
|
| 648 |
-
#
|
| 649 |
-
# def evaluate(model, dataloader, device, id2label):
|
| 650 |
-
# model.eval()
|
| 651 |
-
# all_preds, all_labels = [], []
|
| 652 |
-
# with torch.no_grad():
|
| 653 |
-
# for batch in tqdm(dataloader, desc="Evaluating"):
|
| 654 |
-
# batch = {k: v.to(device) for k, v in batch.items()}
|
| 655 |
-
# labels = batch.pop("labels").cpu().numpy()
|
| 656 |
-
# # The model returns a list of lists of predicted labels in inference mode
|
| 657 |
-
# preds = model(**batch)
|
| 658 |
-
# for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
|
| 659 |
-
# valid = mask == 1
|
| 660 |
-
# l = l[valid].tolist()
|
| 661 |
-
# all_labels.extend(l)
|
| 662 |
-
# # Ensure pred length matches label length for the unmasked tokens
|
| 663 |
-
# all_preds.extend(p[:len(l)])
|
| 664 |
-
#
|
| 665 |
-
# # Exclude the "O" label and other special tokens if necessary, but using 'micro' average
|
| 666 |
-
# precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
|
| 667 |
-
# return precision, recall, f1
|
| 668 |
-
#
|
| 669 |
-
#
|
| 670 |
-
# # -------------------------
|
| 671 |
-
# # Step 5: Main Pipeline (Training) - MODIFIED MODEL/TOKENIZER LOADING
|
| 672 |
-
# # -------------------------
|
| 673 |
-
# def main(args):
|
| 674 |
-
# # LABELS UPDATED: Added SECTION_HEADING and PASSAGE
|
| 675 |
-
# labels = [
|
| 676 |
-
# "O",
|
| 677 |
-
# "B-QUESTION", "I-QUESTION",
|
| 678 |
-
# "B-OPTION", "I-OPTION",
|
| 679 |
-
# "B-ANSWER", "I-ANSWER",
|
| 680 |
-
# "B-SECTION_HEADING", "I-SECTION_HEADING",
|
| 681 |
-
# "B-PASSAGE", "I-PASSAGE"
|
| 682 |
-
# ]
|
| 683 |
-
# label2id = {l: i for i, l in enumerate(labels)}
|
| 684 |
-
# id2label = {i: l for l, i in label2id.items()}
|
| 685 |
-
#
|
| 686 |
-
# # --- SETUP: Use a temporary directory for intermediate files ---
|
| 687 |
-
# TEMP_DIR = "temp_intermediate_files"
|
| 688 |
-
# os.makedirs(TEMP_DIR, exist_ok=True)
|
| 689 |
-
# print(f"\n--- SETUP PHASE: Created temp directory: {TEMP_DIR} ---")
|
| 690 |
-
#
|
| 691 |
-
# # 1. Preprocess
|
| 692 |
-
# print("\n--- START PHASE: PREPROCESSING ---")
|
| 693 |
-
# initial_bio_json = os.path.join(TEMP_DIR, "training_data_bio_bboxes.json")
|
| 694 |
-
# preprocess_labelstudio(args.input, initial_bio_json)
|
| 695 |
-
#
|
| 696 |
-
# # 2. Augment
|
| 697 |
-
# print("\n--- START PHASE: AUGMENTATION ---")
|
| 698 |
-
# augmented_bio_json = os.path.join(TEMP_DIR, "augmented_training_data_bio_bboxes.json")
|
| 699 |
-
# final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
|
| 700 |
-
#
|
| 701 |
-
# # 3. Load and split augmented dataset
|
| 702 |
-
# print("\n--- START PHASE: MODEL/DATASET SETUP ---")
|
| 703 |
-
#
|
| 704 |
-
# # Load tokenizer from the specified Hugging Face ID
|
| 705 |
-
# tokenizer = LayoutLMv3TokenizerFast.from_pretrained(HF_MODEL_ID)
|
| 706 |
-
#
|
| 707 |
-
# dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
|
| 708 |
-
# val_size = int(0.2 * len(dataset))
|
| 709 |
-
# train_size = len(dataset) - val_size
|
| 710 |
-
#
|
| 711 |
-
# # Use a fixed seed for reproducibility in split
|
| 712 |
-
# torch.manual_seed(42)
|
| 713 |
-
# train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
| 714 |
-
# train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
|
| 715 |
-
# val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
|
| 716 |
-
#
|
| 717 |
-
# # 4. Initialize and load model
|
| 718 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 719 |
-
# print(f"Using device: {device}")
|
| 720 |
-
#
|
| 721 |
-
# # Pass the Hugging Face ID and device to the custom model wrapper
|
| 722 |
-
# model = LayoutLMv3CRF(HF_MODEL_ID, num_labels=len(labels), device=device).to(device)
|
| 723 |
-
#
|
| 724 |
-
# ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
|
| 725 |
-
# os.makedirs("checkpoints", exist_ok=True)
|
| 726 |
-
# if os.path.exists(ckpt_path):
|
| 727 |
-
# print(f"β οΈ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
|
| 728 |
-
#
|
| 729 |
-
# optimizer = AdamW(model.parameters(), lr=args.lr)
|
| 730 |
-
#
|
| 731 |
-
# # 5. Training loop
|
| 732 |
-
# for epoch in range(args.epochs):
|
| 733 |
-
# print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
|
| 734 |
-
# avg_loss = train_one_epoch(model, train_loader, optimizer, device)
|
| 735 |
-
#
|
| 736 |
-
# print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
|
| 737 |
-
# precision, recall, f1 = evaluate(model, val_loader, device, id2label)
|
| 738 |
-
#
|
| 739 |
-
# print(
|
| 740 |
-
# f"Epoch {epoch + 1}/{args.epochs} | Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
|
| 741 |
-
# torch.save(model.state_dict(), ckpt_path)
|
| 742 |
-
# print(f"πΎ Model saved at {ckpt_path}")
|
| 743 |
-
#
|
| 744 |
-
#
|
| 745 |
-
# # -------------------------
|
| 746 |
-
# # Step 7: Main Execution
|
| 747 |
-
# # -------------------------
|
| 748 |
-
# if __name__ == "__main__":
|
| 749 |
-
# parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
|
| 750 |
-
# parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
|
| 751 |
-
# help="Select mode: 'train' or 'infer'")
|
| 752 |
-
# parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
|
| 753 |
-
# parser.add_argument("--batch_size", type=int, default=4)
|
| 754 |
-
# parser.add_argument("--epochs", type=int, default=5)
|
| 755 |
-
# parser.add_argument("--lr", type=float, default=5e-5)
|
| 756 |
-
# parser.add_argument("--max_len", type=int, default=512)
|
| 757 |
-
# args = parser.parse_args()
|
| 758 |
-
#
|
| 759 |
-
# if args.mode == "train":
|
| 760 |
-
# if not args.input:
|
| 761 |
-
# parser.error("--input is required for 'train' mode.")
|
| 762 |
-
# main(args)
|
| 763 |
-
|
| 764 |
|
| 765 |
import json
|
| 766 |
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
import json
|
| 3 |
import argparse
|