Spaces:
Running
Running
Commit
Β·
a21bd5b
1
Parent(s):
525a040
download .pth file
Browse files
app.py
CHANGED
|
@@ -310,12 +310,173 @@
|
|
| 310 |
# # and sometimes cause issues in managed Space environments.
|
| 311 |
# demo.launch()
|
| 312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
import gradio as gr
|
| 315 |
import subprocess
|
| 316 |
import os
|
| 317 |
import sys
|
| 318 |
from datetime import datetime
|
|
|
|
| 319 |
|
| 320 |
# FIX: Update the script name to the correct one you uploaded
|
| 321 |
TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
|
|
@@ -339,15 +500,13 @@ def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float,
|
|
| 339 |
|
| 340 |
# 2. File Handling: Use the temporary path of the uploaded file
|
| 341 |
if dataset_file is None:
|
| 342 |
-
|
| 343 |
-
return
|
| 344 |
|
| 345 |
# Using .name (Corrected in previous steps)
|
| 346 |
input_path = dataset_file.name
|
| 347 |
|
| 348 |
if not input_path.lower().endswith(".json"):
|
| 349 |
-
|
| 350 |
-
return
|
| 351 |
|
| 352 |
progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 353 |
|
|
@@ -356,7 +515,6 @@ def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float,
|
|
| 356 |
# 3. Construct the subprocess command
|
| 357 |
command = [
|
| 358 |
sys.executable,
|
| 359 |
-
# Now uses the corrected TRAINING_SCRIPT variable
|
| 360 |
TRAINING_SCRIPT,
|
| 361 |
"--mode", "train",
|
| 362 |
"--input", input_path,
|
|
@@ -367,7 +525,6 @@ def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float,
|
|
| 367 |
]
|
| 368 |
|
| 369 |
log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 370 |
-
yield log_output, None # Yield the command to the log output
|
| 371 |
|
| 372 |
try:
|
| 373 |
# 4. Run the training script and capture output
|
|
@@ -382,7 +539,8 @@ def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float,
|
|
| 382 |
# Stream logs in real-time
|
| 383 |
for line in iter(process.stdout.readline, ""):
|
| 384 |
log_output += line
|
| 385 |
-
|
|
|
|
| 386 |
|
| 387 |
process.stdout.close()
|
| 388 |
return_code = process.wait()
|
|
@@ -390,81 +548,165 @@ def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float,
|
|
| 390 |
# 5. Check for successful completion
|
| 391 |
if return_code == 0:
|
| 392 |
log_output += "\nβ
TRAINING COMPLETE! Model saved."
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
log_output += f"\
|
| 399 |
-
|
| 400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
else:
|
| 402 |
log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
return log_output, None
|
| 404 |
else:
|
| 405 |
log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 406 |
return log_output, None
|
| 407 |
|
| 408 |
except FileNotFoundError:
|
| 409 |
-
|
|
|
|
|
|
|
| 410 |
except Exception as e:
|
| 411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
|
| 413 |
|
| 414 |
# --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 415 |
-
with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
| 416 |
gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 417 |
gr.Markdown(
|
| 418 |
"""
|
| 419 |
-
Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
-
|
| 422 |
"""
|
| 423 |
)
|
| 424 |
|
| 425 |
with gr.Row():
|
| 426 |
with gr.Column(scale=1):
|
|
|
|
| 427 |
file_input = gr.File(
|
| 428 |
-
label="
|
|
|
|
| 429 |
)
|
| 430 |
|
| 431 |
gr.Markdown("---")
|
| 432 |
gr.Markdown("### βοΈ Training Parameters")
|
| 433 |
|
| 434 |
batch_size_input = gr.Slider(
|
| 435 |
-
minimum=1, maximum=
|
|
|
|
|
|
|
| 436 |
)
|
| 437 |
epochs_input = gr.Slider(
|
| 438 |
-
minimum=1, maximum=
|
|
|
|
|
|
|
| 439 |
)
|
| 440 |
lr_input = gr.Number(
|
| 441 |
-
value=5e-5, label="Learning Rate
|
|
|
|
| 442 |
)
|
| 443 |
-
max_len_input = gr.
|
| 444 |
-
|
|
|
|
|
|
|
| 445 |
)
|
| 446 |
|
|
|
|
|
|
|
| 447 |
with gr.Column(scale=2):
|
| 448 |
-
|
| 449 |
|
| 450 |
log_output = gr.Textbox(
|
| 451 |
-
label="Training
|
| 452 |
-
lines=
|
|
|
|
| 453 |
autoscroll=True,
|
| 454 |
-
|
|
|
|
| 455 |
)
|
| 456 |
|
| 457 |
-
gr.Markdown("
|
| 458 |
-
gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
|
| 459 |
|
| 460 |
-
|
| 461 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
|
| 463 |
# Define the action when the button is clicked
|
| 464 |
train_button.click(
|
| 465 |
fn=train_model,
|
| 466 |
inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 467 |
-
outputs=[log_output, model_download]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
)
|
| 469 |
|
| 470 |
if __name__ == "__main__":
|
|
|
|
| 310 |
# # and sometimes cause issues in managed Space environments.
|
| 311 |
# demo.launch()
|
| 312 |
|
| 313 |
+
#
|
| 314 |
+
# import gradio as gr
|
| 315 |
+
# import subprocess
|
| 316 |
+
# import os
|
| 317 |
+
# import sys
|
| 318 |
+
# from datetime import datetime
|
| 319 |
+
#
|
| 320 |
+
# # FIX: Update the script name to the correct one you uploaded
|
| 321 |
+
# TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
|
| 322 |
+
#
|
| 323 |
+
# # --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
|
| 324 |
+
# MODEL_OUTPUT_DIR = "checkpoints"
|
| 325 |
+
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 326 |
+
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 327 |
+
#
|
| 328 |
+
#
|
| 329 |
+
# # ----------------------------------------------------------------
|
| 330 |
+
#
|
| 331 |
+
#
|
| 332 |
+
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 333 |
+
# """
|
| 334 |
+
# Handles the Gradio submission and executes the training script using subprocess.
|
| 335 |
+
# """
|
| 336 |
+
#
|
| 337 |
+
# # 1. Setup: Create output directory if it doesn't exist
|
| 338 |
+
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 339 |
+
#
|
| 340 |
+
# # 2. File Handling: Use the temporary path of the uploaded file
|
| 341 |
+
# if dataset_file is None:
|
| 342 |
+
# yield "β ERROR: Please upload a file.", None
|
| 343 |
+
# return
|
| 344 |
+
#
|
| 345 |
+
# # Using .name (Corrected in previous steps)
|
| 346 |
+
# input_path = dataset_file.name
|
| 347 |
+
#
|
| 348 |
+
# if not input_path.lower().endswith(".json"):
|
| 349 |
+
# yield "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
|
| 350 |
+
# return
|
| 351 |
+
#
|
| 352 |
+
# progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 353 |
+
#
|
| 354 |
+
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 355 |
+
#
|
| 356 |
+
# # 3. Construct the subprocess command
|
| 357 |
+
# command = [
|
| 358 |
+
# sys.executable,
|
| 359 |
+
# # Now uses the corrected TRAINING_SCRIPT variable
|
| 360 |
+
# TRAINING_SCRIPT,
|
| 361 |
+
# "--mode", "train",
|
| 362 |
+
# "--input", input_path,
|
| 363 |
+
# "--batch_size", str(batch_size),
|
| 364 |
+
# "--epochs", str(epochs),
|
| 365 |
+
# "--lr", str(lr),
|
| 366 |
+
# "--max_len", str(max_len)
|
| 367 |
+
# ]
|
| 368 |
+
#
|
| 369 |
+
# log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 370 |
+
# yield log_output, None # Yield the command to the log output
|
| 371 |
+
#
|
| 372 |
+
# try:
|
| 373 |
+
# # 4. Run the training script and capture output
|
| 374 |
+
# process = subprocess.Popen(
|
| 375 |
+
# command,
|
| 376 |
+
# stdout=subprocess.PIPE,
|
| 377 |
+
# stderr=subprocess.STDOUT,
|
| 378 |
+
# text=True,
|
| 379 |
+
# bufsize=1
|
| 380 |
+
# )
|
| 381 |
+
#
|
| 382 |
+
# # Stream logs in real-time
|
| 383 |
+
# for line in iter(process.stdout.readline, ""):
|
| 384 |
+
# log_output += line
|
| 385 |
+
# yield log_output, None # Send partial log to Gradio output
|
| 386 |
+
#
|
| 387 |
+
# process.stdout.close()
|
| 388 |
+
# return_code = process.wait()
|
| 389 |
+
#
|
| 390 |
+
# # 5. Check for successful completion
|
| 391 |
+
# if return_code == 0:
|
| 392 |
+
# log_output += "\nβ
TRAINING COMPLETE! Model saved."
|
| 393 |
+
#
|
| 394 |
+
# # 6. Prepare download links based on script's saved path
|
| 395 |
+
# model_exists = os.path.exists(MODEL_FILE_PATH)
|
| 396 |
+
#
|
| 397 |
+
# if model_exists:
|
| 398 |
+
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
|
| 399 |
+
# # Return final log, and the file path for Gradio's download component
|
| 400 |
+
# return log_output, MODEL_FILE_PATH
|
| 401 |
+
# else:
|
| 402 |
+
# log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 403 |
+
# return log_output, None
|
| 404 |
+
# else:
|
| 405 |
+
# log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 406 |
+
# return log_output, None
|
| 407 |
+
#
|
| 408 |
+
# except FileNotFoundError:
|
| 409 |
+
# return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
|
| 410 |
+
# except Exception as e:
|
| 411 |
+
# return f"β An unexpected error occurred: {e}", None
|
| 412 |
+
#
|
| 413 |
+
#
|
| 414 |
+
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 415 |
+
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
| 416 |
+
# gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 417 |
+
# gr.Markdown(
|
| 418 |
+
# """
|
| 419 |
+
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
|
| 420 |
+
#
|
| 421 |
+
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
|
| 422 |
+
# """
|
| 423 |
+
# )
|
| 424 |
+
#
|
| 425 |
+
# with gr.Row():
|
| 426 |
+
# with gr.Column(scale=1):
|
| 427 |
+
# file_input = gr.File(
|
| 428 |
+
# label="1. Upload Label Studio JSON Dataset"
|
| 429 |
+
# )
|
| 430 |
+
#
|
| 431 |
+
# gr.Markdown("---")
|
| 432 |
+
# gr.Markdown("### βοΈ Training Parameters")
|
| 433 |
+
#
|
| 434 |
+
# batch_size_input = gr.Slider(
|
| 435 |
+
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
|
| 436 |
+
# )
|
| 437 |
+
# epochs_input = gr.Slider(
|
| 438 |
+
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
|
| 439 |
+
# )
|
| 440 |
+
# lr_input = gr.Number(
|
| 441 |
+
# value=5e-5, label="Learning Rate (--lr)"
|
| 442 |
+
# )
|
| 443 |
+
# max_len_input = gr.Number(
|
| 444 |
+
# value=512, label="Max Sequence Length (--max_len)"
|
| 445 |
+
# )
|
| 446 |
+
#
|
| 447 |
+
# with gr.Column(scale=2):
|
| 448 |
+
# train_button = gr.Button("π₯ Train Model", variant="primary")
|
| 449 |
+
#
|
| 450 |
+
# log_output = gr.Textbox(
|
| 451 |
+
# label="Training Log Output",
|
| 452 |
+
# lines=20,
|
| 453 |
+
# autoscroll=True,
|
| 454 |
+
# placeholder="Click 'Train Model' to start and see real-time logs..."
|
| 455 |
+
# )
|
| 456 |
+
#
|
| 457 |
+
# gr.Markdown("---")
|
| 458 |
+
# gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
|
| 459 |
+
#
|
| 460 |
+
# # Only providing the download link for the saved .pth model file
|
| 461 |
+
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
|
| 462 |
+
#
|
| 463 |
+
# # Define the action when the button is clicked
|
| 464 |
+
# train_button.click(
|
| 465 |
+
# fn=train_model,
|
| 466 |
+
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 467 |
+
# outputs=[log_output, model_download]
|
| 468 |
+
# )
|
| 469 |
+
#
|
| 470 |
+
# if __name__ == "__main__":
|
| 471 |
+
# demo.launch()
|
| 472 |
+
|
| 473 |
|
| 474 |
import gradio as gr
|
| 475 |
import subprocess
|
| 476 |
import os
|
| 477 |
import sys
|
| 478 |
from datetime import datetime
|
| 479 |
+
import shutil
|
| 480 |
|
| 481 |
# FIX: Update the script name to the correct one you uploaded
|
| 482 |
TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
|
|
|
|
| 500 |
|
| 501 |
# 2. File Handling: Use the temporary path of the uploaded file
|
| 502 |
if dataset_file is None:
|
| 503 |
+
return "β ERROR: Please upload a file.", None
|
|
|
|
| 504 |
|
| 505 |
# Using .name (Corrected in previous steps)
|
| 506 |
input_path = dataset_file.name
|
| 507 |
|
| 508 |
if not input_path.lower().endswith(".json"):
|
| 509 |
+
return "β ERROR: Please upload a valid Label Studio JSON file (.json).", None
|
|
|
|
| 510 |
|
| 511 |
progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 512 |
|
|
|
|
| 515 |
# 3. Construct the subprocess command
|
| 516 |
command = [
|
| 517 |
sys.executable,
|
|
|
|
| 518 |
TRAINING_SCRIPT,
|
| 519 |
"--mode", "train",
|
| 520 |
"--input", input_path,
|
|
|
|
| 525 |
]
|
| 526 |
|
| 527 |
log_output += f"Executing command: {' '.join(command)}\n\n"
|
|
|
|
| 528 |
|
| 529 |
try:
|
| 530 |
# 4. Run the training script and capture output
|
|
|
|
| 539 |
# Stream logs in real-time
|
| 540 |
for line in iter(process.stdout.readline, ""):
|
| 541 |
log_output += line
|
| 542 |
+
# Print to console as well for debugging
|
| 543 |
+
print(line, end='')
|
| 544 |
|
| 545 |
process.stdout.close()
|
| 546 |
return_code = process.wait()
|
|
|
|
| 548 |
# 5. Check for successful completion
|
| 549 |
if return_code == 0:
|
| 550 |
log_output += "\nβ
TRAINING COMPLETE! Model saved."
|
| 551 |
+
print("\nβ
TRAINING COMPLETE! Model saved.")
|
| 552 |
+
|
| 553 |
+
# 6. Verify model file exists
|
| 554 |
+
if os.path.exists(MODEL_FILE_PATH):
|
| 555 |
+
file_size = os.path.getsize(MODEL_FILE_PATH) / (1024 * 1024) # Size in MB
|
| 556 |
+
log_output += f"\nπ¦ Model file: {MODEL_FILE_PATH}"
|
| 557 |
+
log_output += f"\nπ Model size: {file_size:.2f} MB"
|
| 558 |
+
log_output += f"\nβ¬οΈ Click the download button below to save your model!"
|
| 559 |
+
|
| 560 |
+
print(f"\nβ
Model exists at: {MODEL_FILE_PATH} ({file_size:.2f} MB)")
|
| 561 |
+
|
| 562 |
+
# Create a copy in the root directory for easier access
|
| 563 |
+
root_copy = MODEL_FILE_NAME
|
| 564 |
+
try:
|
| 565 |
+
shutil.copy2(MODEL_FILE_PATH, root_copy)
|
| 566 |
+
log_output += f"\nπ Copy created: {root_copy}"
|
| 567 |
+
print(f"β
Created copy at: {root_copy}")
|
| 568 |
+
except Exception as e:
|
| 569 |
+
log_output += f"\nβ οΈ Could not create root copy: {e}"
|
| 570 |
+
root_copy = MODEL_FILE_PATH
|
| 571 |
+
|
| 572 |
+
# Return the full absolute path to ensure Gradio can find it
|
| 573 |
+
absolute_path = os.path.abspath(root_copy)
|
| 574 |
+
log_output += f"\nπ Download path: {absolute_path}"
|
| 575 |
+
|
| 576 |
+
return log_output, absolute_path
|
| 577 |
else:
|
| 578 |
log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 579 |
+
log_output += f"\nπ Checking directory contents..."
|
| 580 |
+
|
| 581 |
+
# List files in checkpoints directory for debugging
|
| 582 |
+
if os.path.exists(MODEL_OUTPUT_DIR):
|
| 583 |
+
files = os.listdir(MODEL_OUTPUT_DIR)
|
| 584 |
+
log_output += f"\nπ Files in {MODEL_OUTPUT_DIR}: {files}"
|
| 585 |
+
else:
|
| 586 |
+
log_output += f"\nβ Directory {MODEL_OUTPUT_DIR} does not exist!"
|
| 587 |
+
|
| 588 |
return log_output, None
|
| 589 |
else:
|
| 590 |
log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 591 |
return log_output, None
|
| 592 |
|
| 593 |
except FileNotFoundError:
|
| 594 |
+
error_msg = f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space."
|
| 595 |
+
print(error_msg)
|
| 596 |
+
return error_msg, None
|
| 597 |
except Exception as e:
|
| 598 |
+
error_msg = f"β An unexpected error occurred: {e}"
|
| 599 |
+
print(error_msg)
|
| 600 |
+
import traceback
|
| 601 |
+
print(traceback.format_exc())
|
| 602 |
+
return error_msg, None
|
| 603 |
|
| 604 |
|
| 605 |
# --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 606 |
+
with gr.Blocks(title="LayoutLMv3 Fine-Tuning App", theme=gr.themes.Soft()) as demo:
|
| 607 |
gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 608 |
gr.Markdown(
|
| 609 |
"""
|
| 610 |
+
Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model.
|
| 611 |
+
|
| 612 |
+
**β οΈ IMPORTANT - Free Tier Users:**
|
| 613 |
+
- **Download your model IMMEDIATELY** after training completes!
|
| 614 |
+
- The model file is **temporary** and will be deleted when the Space restarts.
|
| 615 |
+
- The download button will appear below once training is complete.
|
| 616 |
+
- Model is saved as: **`layoutlmv3_crf_passage.pth`**
|
| 617 |
|
| 618 |
+
**β±οΈ Timeout Note:** Training may timeout on free tier. Consider reducing epochs or batch size for faster training.
|
| 619 |
"""
|
| 620 |
)
|
| 621 |
|
| 622 |
with gr.Row():
|
| 623 |
with gr.Column(scale=1):
|
| 624 |
+
gr.Markdown("### π Dataset Upload")
|
| 625 |
file_input = gr.File(
|
| 626 |
+
label="Upload Label Studio JSON Dataset",
|
| 627 |
+
file_types=[".json"]
|
| 628 |
)
|
| 629 |
|
| 630 |
gr.Markdown("---")
|
| 631 |
gr.Markdown("### βοΈ Training Parameters")
|
| 632 |
|
| 633 |
batch_size_input = gr.Slider(
|
| 634 |
+
minimum=1, maximum=16, step=1, value=4,
|
| 635 |
+
label="Batch Size",
|
| 636 |
+
info="Smaller = less memory, slower training"
|
| 637 |
)
|
| 638 |
epochs_input = gr.Slider(
|
| 639 |
+
minimum=1, maximum=10, step=1, value=3,
|
| 640 |
+
label="Epochs",
|
| 641 |
+
info="Fewer epochs = faster training (recommended: 3-5)"
|
| 642 |
)
|
| 643 |
lr_input = gr.Number(
|
| 644 |
+
value=5e-5, label="Learning Rate",
|
| 645 |
+
info="Default: 5e-5"
|
| 646 |
)
|
| 647 |
+
max_len_input = gr.Slider(
|
| 648 |
+
minimum=128, maximum=512, step=128, value=512,
|
| 649 |
+
label="Max Sequence Length",
|
| 650 |
+
info="Shorter = faster training, less memory"
|
| 651 |
)
|
| 652 |
|
| 653 |
+
train_button = gr.Button("π₯ Start Training", variant="primary", size="lg")
|
| 654 |
+
|
| 655 |
with gr.Column(scale=2):
|
| 656 |
+
gr.Markdown("### π Training Progress")
|
| 657 |
|
| 658 |
log_output = gr.Textbox(
|
| 659 |
+
label="Training Logs",
|
| 660 |
+
lines=25,
|
| 661 |
+
max_lines=30,
|
| 662 |
autoscroll=True,
|
| 663 |
+
show_copy_button=True,
|
| 664 |
+
placeholder="Click 'Start Training' to begin...\n\nLogs will appear here in real-time."
|
| 665 |
)
|
| 666 |
|
| 667 |
+
gr.Markdown("### β¬οΈ Download Trained Model")
|
|
|
|
| 668 |
|
| 669 |
+
model_download = gr.File(
|
| 670 |
+
label="Trained Model File (layoutlmv3_crf_passage.pth)",
|
| 671 |
+
interactive=False,
|
| 672 |
+
visible=True
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
gr.Markdown(
|
| 676 |
+
"""
|
| 677 |
+
**π₯ Download Instructions:**
|
| 678 |
+
1. Wait for training to complete (β
appears in logs)
|
| 679 |
+
2. Click the download button/icon that appears above
|
| 680 |
+
3. Save the `.pth` file to your local machine
|
| 681 |
+
4. **Do this immediately** - file is temporary!
|
| 682 |
+
|
| 683 |
+
**π§ Troubleshooting:**
|
| 684 |
+
- If download button doesn't appear, check the logs for errors
|
| 685 |
+
- Try reducing epochs or batch size if timeout occurs
|
| 686 |
+
- Ensure your JSON file is properly formatted
|
| 687 |
+
"""
|
| 688 |
+
)
|
| 689 |
|
| 690 |
# Define the action when the button is clicked
|
| 691 |
train_button.click(
|
| 692 |
fn=train_model,
|
| 693 |
inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 694 |
+
outputs=[log_output, model_download],
|
| 695 |
+
api_name="train"
|
| 696 |
+
)
|
| 697 |
+
|
| 698 |
+
# Add example info
|
| 699 |
+
gr.Markdown(
|
| 700 |
+
"""
|
| 701 |
+
---
|
| 702 |
+
### π About
|
| 703 |
+
This Space fine-tunes LayoutLMv3 with CRF for document understanding tasks including:
|
| 704 |
+
- Questions, Options, Answers
|
| 705 |
+
- Section Headings
|
| 706 |
+
- Passages
|
| 707 |
+
|
| 708 |
+
**Model Details:** LayoutLMv3-base + CRF layer for sequence labeling
|
| 709 |
+
"""
|
| 710 |
)
|
| 711 |
|
| 712 |
if __name__ == "__main__":
|