Spaces:
Running
Running
Commit
·
c08f202
1
Parent(s):
1636abd
change
Browse files
app.py
CHANGED
|
@@ -1,1001 +1,3 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# import subprocess
|
| 3 |
-
# import os
|
| 4 |
-
# import sys
|
| 5 |
-
# from datetime import datetime
|
| 6 |
-
#
|
| 7 |
-
# # The name of your existing training script
|
| 8 |
-
# TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
|
| 9 |
-
#
|
| 10 |
-
# # --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
|
| 11 |
-
# MODEL_OUTPUT_DIR = "checkpoints"
|
| 12 |
-
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 13 |
-
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 14 |
-
#
|
| 15 |
-
#
|
| 16 |
-
# # ----------------------------------------------------------------
|
| 17 |
-
#
|
| 18 |
-
#
|
| 19 |
-
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 20 |
-
# """
|
| 21 |
-
# Handles the Gradio submission and executes the training script using subprocess.
|
| 22 |
-
# """
|
| 23 |
-
#
|
| 24 |
-
# # 1. Setup: Create output directory if it doesn't exist
|
| 25 |
-
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 26 |
-
#
|
| 27 |
-
# # 2. File Handling: Use the temporary path of the uploaded file
|
| 28 |
-
# # if dataset_file is None or not dataset_file.path.endswith(".json"):
|
| 29 |
-
# # return "❌ ERROR: Please upload a valid Label Studio JSON file.", None
|
| 30 |
-
#
|
| 31 |
-
# input_path = dataset_file.path
|
| 32 |
-
#
|
| 33 |
-
# progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 34 |
-
#
|
| 35 |
-
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 36 |
-
#
|
| 37 |
-
# # 3. Construct the subprocess command
|
| 38 |
-
# command = [
|
| 39 |
-
# sys.executable,
|
| 40 |
-
# TRAINING_SCRIPT,
|
| 41 |
-
# "--mode", "train",
|
| 42 |
-
# "--input", input_path,
|
| 43 |
-
# "--batch_size", str(batch_size),
|
| 44 |
-
# "--epochs", str(epochs),
|
| 45 |
-
# "--lr", str(lr),
|
| 46 |
-
# "--max_len", str(max_len)
|
| 47 |
-
# ]
|
| 48 |
-
#
|
| 49 |
-
# log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 50 |
-
#
|
| 51 |
-
# try:
|
| 52 |
-
# # 4. Run the training script and capture output
|
| 53 |
-
# process = subprocess.Popen(
|
| 54 |
-
# command,
|
| 55 |
-
# stdout=subprocess.PIPE,
|
| 56 |
-
# stderr=subprocess.STDOUT,
|
| 57 |
-
# text=True,
|
| 58 |
-
# bufsize=1
|
| 59 |
-
# )
|
| 60 |
-
#
|
| 61 |
-
# # Stream logs in real-time
|
| 62 |
-
# for line in iter(process.stdout.readline, ""):
|
| 63 |
-
# log_output += line
|
| 64 |
-
# yield log_output, None # Send partial log to Gradio output
|
| 65 |
-
#
|
| 66 |
-
# process.stdout.close()
|
| 67 |
-
# return_code = process.wait()
|
| 68 |
-
#
|
| 69 |
-
# # 5. Check for successful completion
|
| 70 |
-
# if return_code == 0:
|
| 71 |
-
# log_output += "\n✅ TRAINING COMPLETE! Model saved."
|
| 72 |
-
#
|
| 73 |
-
# # 6. Prepare download links based on script's saved path
|
| 74 |
-
# model_exists = os.path.exists(MODEL_FILE_PATH)
|
| 75 |
-
#
|
| 76 |
-
# if model_exists:
|
| 77 |
-
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
|
| 78 |
-
# # Return final log, and the file path for Gradio's download component
|
| 79 |
-
# return log_output, MODEL_FILE_PATH
|
| 80 |
-
# else:
|
| 81 |
-
# log_output += f"\n⚠️ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 82 |
-
# return log_output, None
|
| 83 |
-
# else:
|
| 84 |
-
# log_output += f"\n\n❌ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 85 |
-
# return log_output, None
|
| 86 |
-
#
|
| 87 |
-
# except FileNotFoundError:
|
| 88 |
-
# return f"❌ ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
|
| 89 |
-
# except Exception as e:
|
| 90 |
-
# return f"❌ An unexpected error occurred: {e}", None
|
| 91 |
-
#
|
| 92 |
-
#
|
| 93 |
-
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 94 |
-
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
| 95 |
-
# gr.Markdown("# 🚀 LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 96 |
-
# gr.Markdown(
|
| 97 |
-
# """
|
| 98 |
-
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
|
| 99 |
-
#
|
| 100 |
-
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
|
| 101 |
-
# """
|
| 102 |
-
# )
|
| 103 |
-
#
|
| 104 |
-
# with gr.Row():
|
| 105 |
-
# with gr.Column(scale=1):
|
| 106 |
-
# file_input = gr.File(
|
| 107 |
-
# label="1. Upload Label Studio JSON Dataset"
|
| 108 |
-
# )
|
| 109 |
-
#
|
| 110 |
-
# gr.Markdown("---")
|
| 111 |
-
# gr.Markdown("### ⚙️ Training Parameters")
|
| 112 |
-
#
|
| 113 |
-
# batch_size_input = gr.Slider(
|
| 114 |
-
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
|
| 115 |
-
# )
|
| 116 |
-
# epochs_input = gr.Slider(
|
| 117 |
-
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
|
| 118 |
-
# )
|
| 119 |
-
# lr_input = gr.Number(
|
| 120 |
-
# value=5e-5, label="Learning Rate (--lr)"
|
| 121 |
-
# )
|
| 122 |
-
# max_len_input = gr.Number(
|
| 123 |
-
# value=512, label="Max Sequence Length (--max_len)"
|
| 124 |
-
# )
|
| 125 |
-
#
|
| 126 |
-
# with gr.Column(scale=2):
|
| 127 |
-
# train_button = gr.Button("🔥 Train Model", variant="primary")
|
| 128 |
-
#
|
| 129 |
-
# log_output = gr.Textbox(
|
| 130 |
-
# label="Training Log Output",
|
| 131 |
-
# lines=20,
|
| 132 |
-
# autoscroll=True,
|
| 133 |
-
# placeholder="Click 'Train Model' to start and see real-time logs..."
|
| 134 |
-
# )
|
| 135 |
-
#
|
| 136 |
-
# gr.Markdown("---")
|
| 137 |
-
# gr.Markdown(f"### 🎉 Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
|
| 138 |
-
#
|
| 139 |
-
# # Only providing the download link for the saved .pth model file
|
| 140 |
-
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
|
| 141 |
-
#
|
| 142 |
-
# # Define the action when the button is clicked
|
| 143 |
-
# train_button.click(
|
| 144 |
-
# fn=train_model,
|
| 145 |
-
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 146 |
-
# outputs=[log_output, model_download]
|
| 147 |
-
# )
|
| 148 |
-
#
|
| 149 |
-
# if __name__ == "__main__":
|
| 150 |
-
# demo.launch(server_port=7860, server_name="0.0.0.0")
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# import gradio as gr
|
| 154 |
-
# import subprocess
|
| 155 |
-
# import os
|
| 156 |
-
# import sys
|
| 157 |
-
# from datetime import datetime
|
| 158 |
-
#
|
| 159 |
-
# # The name of your existing training script
|
| 160 |
-
# TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
|
| 161 |
-
#
|
| 162 |
-
# # --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
|
| 163 |
-
# MODEL_OUTPUT_DIR = "checkpoints"
|
| 164 |
-
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 165 |
-
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 166 |
-
#
|
| 167 |
-
#
|
| 168 |
-
# # ----------------------------------------------------------------
|
| 169 |
-
#
|
| 170 |
-
#
|
| 171 |
-
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 172 |
-
# """
|
| 173 |
-
# Handles the Gradio submission and executes the training script using subprocess.
|
| 174 |
-
# """
|
| 175 |
-
#
|
| 176 |
-
# # 1. Setup: Create output directory if it doesn't exist
|
| 177 |
-
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 178 |
-
#
|
| 179 |
-
# # 2. File Handling: Use the temporary path of the uploaded file
|
| 180 |
-
# if dataset_file is None:
|
| 181 |
-
# yield "❌ ERROR: Please upload a file.", None
|
| 182 |
-
# return
|
| 183 |
-
#
|
| 184 |
-
# # FIX: Gradio returns the path in the .name attribute, not .path
|
| 185 |
-
# input_path = dataset_file.name
|
| 186 |
-
#
|
| 187 |
-
# if not input_path.lower().endswith(".json"):
|
| 188 |
-
# yield "❌ ERROR: Please upload a valid Label Studio JSON file (.json).", None
|
| 189 |
-
# return
|
| 190 |
-
#
|
| 191 |
-
# progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 192 |
-
#
|
| 193 |
-
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 194 |
-
#
|
| 195 |
-
# # 3. Construct the subprocess command
|
| 196 |
-
# command = [
|
| 197 |
-
# sys.executable,
|
| 198 |
-
# TRAINING_SCRIPT,
|
| 199 |
-
# "--mode", "train",
|
| 200 |
-
# "--input", input_path,
|
| 201 |
-
# "--batch_size", str(batch_size),
|
| 202 |
-
# "--epochs", str(epochs),
|
| 203 |
-
# "--lr", str(lr),
|
| 204 |
-
# "--max_len", str(max_len)
|
| 205 |
-
# ]
|
| 206 |
-
#
|
| 207 |
-
# log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 208 |
-
# yield log_output, None # Yield the command to the log output
|
| 209 |
-
#
|
| 210 |
-
# try:
|
| 211 |
-
# # 4. Run the training script and capture output
|
| 212 |
-
# process = subprocess.Popen(
|
| 213 |
-
# command,
|
| 214 |
-
# stdout=subprocess.PIPE,
|
| 215 |
-
# stderr=subprocess.STDOUT,
|
| 216 |
-
# text=True,
|
| 217 |
-
# bufsize=1
|
| 218 |
-
# )
|
| 219 |
-
#
|
| 220 |
-
# # Stream logs in real-time
|
| 221 |
-
# for line in iter(process.stdout.readline, ""):
|
| 222 |
-
# log_output += line
|
| 223 |
-
# yield log_output, None # Send partial log to Gradio output
|
| 224 |
-
#
|
| 225 |
-
# process.stdout.close()
|
| 226 |
-
# return_code = process.wait()
|
| 227 |
-
#
|
| 228 |
-
# # 5. Check for successful completion
|
| 229 |
-
# if return_code == 0:
|
| 230 |
-
# log_output += "\n✅ TRAINING COMPLETE! Model saved."
|
| 231 |
-
#
|
| 232 |
-
# # 6. Prepare download links based on script's saved path
|
| 233 |
-
# model_exists = os.path.exists(MODEL_FILE_PATH)
|
| 234 |
-
#
|
| 235 |
-
# if model_exists:
|
| 236 |
-
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
|
| 237 |
-
# # Return final log, and the file path for Gradio's download component
|
| 238 |
-
# return log_output, MODEL_FILE_PATH
|
| 239 |
-
# else:
|
| 240 |
-
# log_output += f"\n⚠️ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 241 |
-
# return log_output, None
|
| 242 |
-
# else:
|
| 243 |
-
# log_output += f"\n\n❌ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 244 |
-
# return log_output, None
|
| 245 |
-
#
|
| 246 |
-
# except FileNotFoundError:
|
| 247 |
-
# return f"❌ ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
|
| 248 |
-
# except Exception as e:
|
| 249 |
-
# return f"❌ An unexpected error occurred: {e}", None
|
| 250 |
-
#
|
| 251 |
-
#
|
| 252 |
-
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 253 |
-
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
| 254 |
-
# gr.Markdown("# 🚀 LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 255 |
-
# gr.Markdown(
|
| 256 |
-
# """
|
| 257 |
-
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
|
| 258 |
-
#
|
| 259 |
-
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
|
| 260 |
-
# """
|
| 261 |
-
# )
|
| 262 |
-
#
|
| 263 |
-
# with gr.Row():
|
| 264 |
-
# with gr.Column(scale=1):
|
| 265 |
-
# file_input = gr.File(
|
| 266 |
-
# label="1. Upload Label Studio JSON Dataset"
|
| 267 |
-
# )
|
| 268 |
-
#
|
| 269 |
-
# gr.Markdown("---")
|
| 270 |
-
# gr.Markdown("### ⚙️ Training Parameters")
|
| 271 |
-
#
|
| 272 |
-
# batch_size_input = gr.Slider(
|
| 273 |
-
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
|
| 274 |
-
# )
|
| 275 |
-
# epochs_input = gr.Slider(
|
| 276 |
-
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
|
| 277 |
-
# )
|
| 278 |
-
# lr_input = gr.Number(
|
| 279 |
-
# value=5e-5, label="Learning Rate (--lr)"
|
| 280 |
-
# )
|
| 281 |
-
# max_len_input = gr.Number(
|
| 282 |
-
# value=512, label="Max Sequence Length (--max_len)"
|
| 283 |
-
# )
|
| 284 |
-
#
|
| 285 |
-
# with gr.Column(scale=2):
|
| 286 |
-
# train_button = gr.Button("🔥 Train Model", variant="primary")
|
| 287 |
-
#
|
| 288 |
-
# log_output = gr.Textbox(
|
| 289 |
-
# label="Training Log Output",
|
| 290 |
-
# lines=20,
|
| 291 |
-
# autoscroll=True,
|
| 292 |
-
# placeholder="Click 'Train Model' to start and see real-time logs..."
|
| 293 |
-
# )
|
| 294 |
-
#
|
| 295 |
-
# gr.Markdown("---")
|
| 296 |
-
# gr.Markdown(f"### 🎉 Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
|
| 297 |
-
#
|
| 298 |
-
# # Only providing the download link for the saved .pth model file
|
| 299 |
-
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
|
| 300 |
-
#
|
| 301 |
-
# # Define the action when the button is clicked
|
| 302 |
-
# train_button.click(
|
| 303 |
-
# fn=train_model,
|
| 304 |
-
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 305 |
-
# outputs=[log_output, model_download]
|
| 306 |
-
# )
|
| 307 |
-
#
|
| 308 |
-
# if __name__ == "__main__":
|
| 309 |
-
# # Removed server_port and server_name as they are often unnecessary
|
| 310 |
-
# # and sometimes cause issues in managed Space environments.
|
| 311 |
-
# demo.launch()
|
| 312 |
-
|
| 313 |
-
#
|
| 314 |
-
# import gradio as gr
|
| 315 |
-
# import subprocess
|
| 316 |
-
# import os
|
| 317 |
-
# import sys
|
| 318 |
-
# from datetime import datetime
|
| 319 |
-
#
|
| 320 |
-
# # FIX: Update the script name to the correct one you uploaded
|
| 321 |
-
# TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
|
| 322 |
-
#
|
| 323 |
-
# # --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
|
| 324 |
-
# MODEL_OUTPUT_DIR = "checkpoints"
|
| 325 |
-
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 326 |
-
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 327 |
-
#
|
| 328 |
-
#
|
| 329 |
-
# # ----------------------------------------------------------------
|
| 330 |
-
#
|
| 331 |
-
#
|
| 332 |
-
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 333 |
-
# """
|
| 334 |
-
# Handles the Gradio submission and executes the training script using subprocess.
|
| 335 |
-
# """
|
| 336 |
-
#
|
| 337 |
-
# # 1. Setup: Create output directory if it doesn't exist
|
| 338 |
-
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 339 |
-
#
|
| 340 |
-
# # 2. File Handling: Use the temporary path of the uploaded file
|
| 341 |
-
# if dataset_file is None:
|
| 342 |
-
# yield "❌ ERROR: Please upload a file.", None
|
| 343 |
-
# return
|
| 344 |
-
#
|
| 345 |
-
# # Using .name (Corrected in previous steps)
|
| 346 |
-
# input_path = dataset_file.name
|
| 347 |
-
#
|
| 348 |
-
# if not input_path.lower().endswith(".json"):
|
| 349 |
-
# yield "❌ ERROR: Please upload a valid Label Studio JSON file (.json).", None
|
| 350 |
-
# return
|
| 351 |
-
#
|
| 352 |
-
# progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 353 |
-
#
|
| 354 |
-
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 355 |
-
#
|
| 356 |
-
# # 3. Construct the subprocess command
|
| 357 |
-
# command = [
|
| 358 |
-
# sys.executable,
|
| 359 |
-
# # Now uses the corrected TRAINING_SCRIPT variable
|
| 360 |
-
# TRAINING_SCRIPT,
|
| 361 |
-
# "--mode", "train",
|
| 362 |
-
# "--input", input_path,
|
| 363 |
-
# "--batch_size", str(batch_size),
|
| 364 |
-
# "--epochs", str(epochs),
|
| 365 |
-
# "--lr", str(lr),
|
| 366 |
-
# "--max_len", str(max_len)
|
| 367 |
-
# ]
|
| 368 |
-
#
|
| 369 |
-
# log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 370 |
-
# yield log_output, None # Yield the command to the log output
|
| 371 |
-
#
|
| 372 |
-
# try:
|
| 373 |
-
# # 4. Run the training script and capture output
|
| 374 |
-
# process = subprocess.Popen(
|
| 375 |
-
# command,
|
| 376 |
-
# stdout=subprocess.PIPE,
|
| 377 |
-
# stderr=subprocess.STDOUT,
|
| 378 |
-
# text=True,
|
| 379 |
-
# bufsize=1
|
| 380 |
-
# )
|
| 381 |
-
#
|
| 382 |
-
# # Stream logs in real-time
|
| 383 |
-
# for line in iter(process.stdout.readline, ""):
|
| 384 |
-
# log_output += line
|
| 385 |
-
# yield log_output, None # Send partial log to Gradio output
|
| 386 |
-
#
|
| 387 |
-
# process.stdout.close()
|
| 388 |
-
# return_code = process.wait()
|
| 389 |
-
#
|
| 390 |
-
# # 5. Check for successful completion
|
| 391 |
-
# if return_code == 0:
|
| 392 |
-
# log_output += "\n✅ TRAINING COMPLETE! Model saved."
|
| 393 |
-
#
|
| 394 |
-
# # 6. Prepare download links based on script's saved path
|
| 395 |
-
# model_exists = os.path.exists(MODEL_FILE_PATH)
|
| 396 |
-
#
|
| 397 |
-
# if model_exists:
|
| 398 |
-
# log_output += f"\nModel path: {MODEL_FILE_PATH}"
|
| 399 |
-
# # Return final log, and the file path for Gradio's download component
|
| 400 |
-
# return log_output, MODEL_FILE_PATH
|
| 401 |
-
# else:
|
| 402 |
-
# log_output += f"\n⚠️ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 403 |
-
# return log_output, None
|
| 404 |
-
# else:
|
| 405 |
-
# log_output += f"\n\n❌ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 406 |
-
# return log_output, None
|
| 407 |
-
#
|
| 408 |
-
# except FileNotFoundError:
|
| 409 |
-
# return f"❌ ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
|
| 410 |
-
# except Exception as e:
|
| 411 |
-
# return f"❌ An unexpected error occurred: {e}", None
|
| 412 |
-
#
|
| 413 |
-
#
|
| 414 |
-
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 415 |
-
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
| 416 |
-
# gr.Markdown("# 🚀 LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 417 |
-
# gr.Markdown(
|
| 418 |
-
# """
|
| 419 |
-
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
|
| 420 |
-
#
|
| 421 |
-
# **Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
|
| 422 |
-
# """
|
| 423 |
-
# )
|
| 424 |
-
#
|
| 425 |
-
# with gr.Row():
|
| 426 |
-
# with gr.Column(scale=1):
|
| 427 |
-
# file_input = gr.File(
|
| 428 |
-
# label="1. Upload Label Studio JSON Dataset"
|
| 429 |
-
# )
|
| 430 |
-
#
|
| 431 |
-
# gr.Markdown("---")
|
| 432 |
-
# gr.Markdown("### ⚙️ Training Parameters")
|
| 433 |
-
#
|
| 434 |
-
# batch_size_input = gr.Slider(
|
| 435 |
-
# minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
|
| 436 |
-
# )
|
| 437 |
-
# epochs_input = gr.Slider(
|
| 438 |
-
# minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
|
| 439 |
-
# )
|
| 440 |
-
# lr_input = gr.Number(
|
| 441 |
-
# value=5e-5, label="Learning Rate (--lr)"
|
| 442 |
-
# )
|
| 443 |
-
# max_len_input = gr.Number(
|
| 444 |
-
# value=512, label="Max Sequence Length (--max_len)"
|
| 445 |
-
# )
|
| 446 |
-
#
|
| 447 |
-
# with gr.Column(scale=2):
|
| 448 |
-
# train_button = gr.Button("🔥 Train Model", variant="primary")
|
| 449 |
-
#
|
| 450 |
-
# log_output = gr.Textbox(
|
| 451 |
-
# label="Training Log Output",
|
| 452 |
-
# lines=20,
|
| 453 |
-
# autoscroll=True,
|
| 454 |
-
# placeholder="Click 'Train Model' to start and see real-time logs..."
|
| 455 |
-
# )
|
| 456 |
-
#
|
| 457 |
-
# gr.Markdown("---")
|
| 458 |
-
# gr.Markdown(f"### 🎉 Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
|
| 459 |
-
#
|
| 460 |
-
# # Only providing the download link for the saved .pth model file
|
| 461 |
-
# model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
|
| 462 |
-
#
|
| 463 |
-
# # Define the action when the button is clicked
|
| 464 |
-
# train_button.click(
|
| 465 |
-
# fn=train_model,
|
| 466 |
-
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 467 |
-
# outputs=[log_output, model_download]
|
| 468 |
-
# )
|
| 469 |
-
#
|
| 470 |
-
# if __name__ == "__main__":
|
| 471 |
-
# demo.launch()
|
| 472 |
-
|
| 473 |
-
#
|
| 474 |
-
# import gradio as gr
|
| 475 |
-
# import subprocess
|
| 476 |
-
# import os
|
| 477 |
-
# import sys
|
| 478 |
-
# from datetime import datetime
|
| 479 |
-
# import shutil
|
| 480 |
-
#
|
| 481 |
-
# # FIX: Update the script name to the correct one you uploaded
|
| 482 |
-
# TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
|
| 483 |
-
#
|
| 484 |
-
# # --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
|
| 485 |
-
# MODEL_OUTPUT_DIR = "checkpoints"
|
| 486 |
-
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 487 |
-
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 488 |
-
#
|
| 489 |
-
#
|
| 490 |
-
# # ----------------------------------------------------------------
|
| 491 |
-
#
|
| 492 |
-
#
|
| 493 |
-
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 494 |
-
# """
|
| 495 |
-
# Handles the Gradio submission and executes the training script using subprocess.
|
| 496 |
-
# """
|
| 497 |
-
#
|
| 498 |
-
# # 1. Setup: Create output directory if it doesn't exist
|
| 499 |
-
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 500 |
-
#
|
| 501 |
-
# # 2. File Handling: Use the temporary path of the uploaded file
|
| 502 |
-
# if dataset_file is None:
|
| 503 |
-
# return "❌ ERROR: Please upload a file.", None
|
| 504 |
-
#
|
| 505 |
-
# # Using .name (Corrected in previous steps)
|
| 506 |
-
# input_path = dataset_file.name
|
| 507 |
-
#
|
| 508 |
-
# if not input_path.lower().endswith(".json"):
|
| 509 |
-
# return "❌ ERROR: Please upload a valid Label Studio JSON file (.json).", None
|
| 510 |
-
#
|
| 511 |
-
# progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 512 |
-
#
|
| 513 |
-
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 514 |
-
#
|
| 515 |
-
# # 3. Construct the subprocess command
|
| 516 |
-
# command = [
|
| 517 |
-
# sys.executable,
|
| 518 |
-
# TRAINING_SCRIPT,
|
| 519 |
-
# "--mode", "train",
|
| 520 |
-
# "--input", input_path,
|
| 521 |
-
# "--batch_size", str(batch_size),
|
| 522 |
-
# "--epochs", str(epochs),
|
| 523 |
-
# "--lr", str(lr),
|
| 524 |
-
# "--max_len", str(max_len)
|
| 525 |
-
# ]
|
| 526 |
-
#
|
| 527 |
-
# log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 528 |
-
#
|
| 529 |
-
# try:
|
| 530 |
-
# # 4. Run the training script and capture output
|
| 531 |
-
# process = subprocess.Popen(
|
| 532 |
-
# command,
|
| 533 |
-
# stdout=subprocess.PIPE,
|
| 534 |
-
# stderr=subprocess.STDOUT,
|
| 535 |
-
# text=True,
|
| 536 |
-
# bufsize=1
|
| 537 |
-
# )
|
| 538 |
-
#
|
| 539 |
-
# # Stream logs in real-time
|
| 540 |
-
# for line in iter(process.stdout.readline, ""):
|
| 541 |
-
# log_output += line
|
| 542 |
-
# # Print to console as well for debugging
|
| 543 |
-
# print(line, end='')
|
| 544 |
-
#
|
| 545 |
-
# process.stdout.close()
|
| 546 |
-
# return_code = process.wait()
|
| 547 |
-
#
|
| 548 |
-
# # 5. Check for successful completion
|
| 549 |
-
# if return_code == 0:
|
| 550 |
-
# log_output += "\n✅ TRAINING COMPLETE! Model saved."
|
| 551 |
-
# print("\n✅ TRAINING COMPLETE! Model saved.")
|
| 552 |
-
#
|
| 553 |
-
# # 6. Verify model file exists
|
| 554 |
-
# if os.path.exists(MODEL_FILE_PATH):
|
| 555 |
-
# file_size = os.path.getsize(MODEL_FILE_PATH) / (1024 * 1024) # Size in MB
|
| 556 |
-
# log_output += f"\n📦 Model file: {MODEL_FILE_PATH}"
|
| 557 |
-
# log_output += f"\n📊 Model size: {file_size:.2f} MB"
|
| 558 |
-
# log_output += f"\n⬇️ Click the download button below to save your model!"
|
| 559 |
-
#
|
| 560 |
-
# print(f"\n✅ Model exists at: {MODEL_FILE_PATH} ({file_size:.2f} MB)")
|
| 561 |
-
#
|
| 562 |
-
# # Create a copy in the root directory for easier access
|
| 563 |
-
# root_copy = MODEL_FILE_NAME
|
| 564 |
-
# try:
|
| 565 |
-
# shutil.copy2(MODEL_FILE_PATH, root_copy)
|
| 566 |
-
# log_output += f"\n📋 Copy created: {root_copy}"
|
| 567 |
-
# print(f"✅ Created copy at: {root_copy}")
|
| 568 |
-
# except Exception as e:
|
| 569 |
-
# log_output += f"\n⚠️ Could not create root copy: {e}"
|
| 570 |
-
# root_copy = MODEL_FILE_PATH
|
| 571 |
-
#
|
| 572 |
-
# # Return the full absolute path to ensure Gradio can find it
|
| 573 |
-
# absolute_path = os.path.abspath(root_copy)
|
| 574 |
-
# log_output += f"\n🔗 Download path: {absolute_path}"
|
| 575 |
-
#
|
| 576 |
-
# return log_output, absolute_path
|
| 577 |
-
# else:
|
| 578 |
-
# log_output += f"\n⚠️ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 579 |
-
# log_output += f"\n🔍 Checking directory contents..."
|
| 580 |
-
#
|
| 581 |
-
# # List files in checkpoints directory for debugging
|
| 582 |
-
# if os.path.exists(MODEL_OUTPUT_DIR):
|
| 583 |
-
# files = os.listdir(MODEL_OUTPUT_DIR)
|
| 584 |
-
# log_output += f"\n📁 Files in {MODEL_OUTPUT_DIR}: {files}"
|
| 585 |
-
# else:
|
| 586 |
-
# log_output += f"\n❌ Directory {MODEL_OUTPUT_DIR} does not exist!"
|
| 587 |
-
#
|
| 588 |
-
# return log_output, None
|
| 589 |
-
# else:
|
| 590 |
-
# log_output += f"\n\n❌ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 591 |
-
# return log_output, None
|
| 592 |
-
#
|
| 593 |
-
# except FileNotFoundError:
|
| 594 |
-
# error_msg = f"❌ ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space."
|
| 595 |
-
# print(error_msg)
|
| 596 |
-
# return error_msg, None
|
| 597 |
-
# except Exception as e:
|
| 598 |
-
# error_msg = f"❌ An unexpected error occurred: {e}"
|
| 599 |
-
# print(error_msg)
|
| 600 |
-
# import traceback
|
| 601 |
-
# print(traceback.format_exc())
|
| 602 |
-
# return error_msg, None
|
| 603 |
-
#
|
| 604 |
-
#
|
| 605 |
-
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 606 |
-
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App", theme=gr.themes.Soft()) as demo:
|
| 607 |
-
# gr.Markdown("# 🚀 LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 608 |
-
# gr.Markdown(
|
| 609 |
-
# """
|
| 610 |
-
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model.
|
| 611 |
-
#
|
| 612 |
-
# **⚠️ IMPORTANT - Free Tier Users:**
|
| 613 |
-
# - **Download your model IMMEDIATELY** after training completes!
|
| 614 |
-
# - The model file is **temporary** and will be deleted when the Space restarts.
|
| 615 |
-
# - The download button will appear below once training is complete.
|
| 616 |
-
# - Model is saved as: **`layoutlmv3_crf_passage.pth`**
|
| 617 |
-
#
|
| 618 |
-
# **⏱️ Timeout Note:** Training may timeout on free tier. Consider reducing epochs or batch size for faster training.
|
| 619 |
-
# """
|
| 620 |
-
# )
|
| 621 |
-
#
|
| 622 |
-
# with gr.Row():
|
| 623 |
-
# with gr.Column(scale=1):
|
| 624 |
-
# gr.Markdown("### 📁 Dataset Upload")
|
| 625 |
-
# file_input = gr.File(
|
| 626 |
-
# label="Upload Label Studio JSON Dataset",
|
| 627 |
-
# file_types=[".json"]
|
| 628 |
-
# )
|
| 629 |
-
#
|
| 630 |
-
# gr.Markdown("---")
|
| 631 |
-
# gr.Markdown("### ⚙️ Training Parameters")
|
| 632 |
-
#
|
| 633 |
-
# batch_size_input = gr.Slider(
|
| 634 |
-
# minimum=1, maximum=16, step=1, value=4,
|
| 635 |
-
# label="Batch Size",
|
| 636 |
-
# info="Smaller = less memory, slower training"
|
| 637 |
-
# )
|
| 638 |
-
# epochs_input = gr.Slider(
|
| 639 |
-
# minimum=1, maximum=10, step=1, value=3,
|
| 640 |
-
# label="Epochs",
|
| 641 |
-
# info="Fewer epochs = faster training (recommended: 3-5)"
|
| 642 |
-
# )
|
| 643 |
-
# lr_input = gr.Number(
|
| 644 |
-
# value=5e-5, label="Learning Rate",
|
| 645 |
-
# info="Default: 5e-5"
|
| 646 |
-
# )
|
| 647 |
-
# max_len_input = gr.Slider(
|
| 648 |
-
# minimum=128, maximum=512, step=128, value=512,
|
| 649 |
-
# label="Max Sequence Length",
|
| 650 |
-
# info="Shorter = faster training, less memory"
|
| 651 |
-
# )
|
| 652 |
-
#
|
| 653 |
-
# train_button = gr.Button("🔥 Start Training", variant="primary", size="lg")
|
| 654 |
-
#
|
| 655 |
-
# with gr.Column(scale=2):
|
| 656 |
-
# gr.Markdown("### 📊 Training Progress")
|
| 657 |
-
#
|
| 658 |
-
# log_output = gr.Textbox(
|
| 659 |
-
# label="Training Logs",
|
| 660 |
-
# lines=25,
|
| 661 |
-
# max_lines=30,
|
| 662 |
-
# autoscroll=True,
|
| 663 |
-
# show_copy_button=True,
|
| 664 |
-
# placeholder="Click 'Start Training' to begin...\n\nLogs will appear here in real-time."
|
| 665 |
-
# )
|
| 666 |
-
#
|
| 667 |
-
# gr.Markdown("### ⬇️ Download Trained Model")
|
| 668 |
-
#
|
| 669 |
-
# model_download = gr.File(
|
| 670 |
-
# label="Trained Model File (layoutlmv3_crf_passage.pth)",
|
| 671 |
-
# interactive=False,
|
| 672 |
-
# visible=True
|
| 673 |
-
# )
|
| 674 |
-
#
|
| 675 |
-
# gr.Markdown(
|
| 676 |
-
# """
|
| 677 |
-
# **📥 Download Instructions:**
|
| 678 |
-
# 1. Wait for training to complete (✅ appears in logs)
|
| 679 |
-
# 2. Click the download button/icon that appears above
|
| 680 |
-
# 3. Save the `.pth` file to your local machine
|
| 681 |
-
# 4. **Do this immediately** - file is temporary!
|
| 682 |
-
#
|
| 683 |
-
# **🔧 Troubleshooting:**
|
| 684 |
-
# - If download button doesn't appear, check the logs for errors
|
| 685 |
-
# - Try reducing epochs or batch size if timeout occurs
|
| 686 |
-
# - Ensure your JSON file is properly formatted
|
| 687 |
-
# """
|
| 688 |
-
# )
|
| 689 |
-
#
|
| 690 |
-
# # Define the action when the button is clicked
|
| 691 |
-
# train_button.click(
|
| 692 |
-
# fn=train_model,
|
| 693 |
-
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 694 |
-
# outputs=[log_output, model_download],
|
| 695 |
-
# api_name="train"
|
| 696 |
-
# )
|
| 697 |
-
#
|
| 698 |
-
# # Add example info
|
| 699 |
-
# gr.Markdown(
|
| 700 |
-
# """
|
| 701 |
-
# ---
|
| 702 |
-
# ### 📖 About
|
| 703 |
-
# This Space fine-tunes LayoutLMv3 with CRF for document understanding tasks including:
|
| 704 |
-
# - Questions, Options, Answers
|
| 705 |
-
# - Section Headings
|
| 706 |
-
# - Passages
|
| 707 |
-
#
|
| 708 |
-
# **Model Details:** LayoutLMv3-base + CRF layer for sequence labeling
|
| 709 |
-
# """
|
| 710 |
-
# )
|
| 711 |
-
#
|
| 712 |
-
# if __name__ == "__main__":
|
| 713 |
-
# demo.launch()
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
# import gradio as gr
|
| 717 |
-
# import subprocess
|
| 718 |
-
# import os
|
| 719 |
-
# import sys
|
| 720 |
-
# from datetime import datetime
|
| 721 |
-
# import shutil
|
| 722 |
-
#
|
| 723 |
-
# # FIX: Update the script name to the correct one you uploaded
|
| 724 |
-
# TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
|
| 725 |
-
#
|
| 726 |
-
# # --- CORRECTED MODEL PATH BASED ON YOUR SCRIPT ---
|
| 727 |
-
# MODEL_OUTPUT_DIR = "checkpoints"
|
| 728 |
-
# MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 729 |
-
# MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 730 |
-
#
|
| 731 |
-
#
|
| 732 |
-
# # ----------------------------------------------------------------
|
| 733 |
-
#
|
| 734 |
-
#
|
| 735 |
-
# def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 736 |
-
# """
|
| 737 |
-
# Handles the Gradio submission and executes the training script using subprocess.
|
| 738 |
-
# """
|
| 739 |
-
#
|
| 740 |
-
# # 1. Setup: Create output directory if it doesn't exist
|
| 741 |
-
# os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 742 |
-
#
|
| 743 |
-
# # 2. File Handling: Use the temporary path of the uploaded file
|
| 744 |
-
# if dataset_file is None:
|
| 745 |
-
# return "❌ ERROR: Please upload a file.", None, gr.Button(visible=False)
|
| 746 |
-
#
|
| 747 |
-
# # Using .name (Corrected in previous steps)
|
| 748 |
-
# input_path = dataset_file.name
|
| 749 |
-
#
|
| 750 |
-
# if not input_path.lower().endswith(".json"):
|
| 751 |
-
# return "❌ ERROR: Please upload a valid Label Studio JSON file (.json).", None, gr.Button(visible=False)
|
| 752 |
-
#
|
| 753 |
-
# progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 754 |
-
#
|
| 755 |
-
# log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 756 |
-
#
|
| 757 |
-
# # 3. Construct the subprocess command
|
| 758 |
-
# command = [
|
| 759 |
-
# sys.executable,
|
| 760 |
-
# TRAINING_SCRIPT,
|
| 761 |
-
# "--mode", "train",
|
| 762 |
-
# "--input", input_path,
|
| 763 |
-
# "--batch_size", str(batch_size),
|
| 764 |
-
# "--epochs", str(epochs),
|
| 765 |
-
# "--lr", str(lr),
|
| 766 |
-
# "--max_len", str(max_len)
|
| 767 |
-
# ]
|
| 768 |
-
#
|
| 769 |
-
# log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 770 |
-
#
|
| 771 |
-
# try:
|
| 772 |
-
# # 4. Run the training script and capture output
|
| 773 |
-
# process = subprocess.Popen(
|
| 774 |
-
# command,
|
| 775 |
-
# stdout=subprocess.PIPE,
|
| 776 |
-
# stderr=subprocess.STDOUT,
|
| 777 |
-
# text=True,
|
| 778 |
-
# bufsize=1
|
| 779 |
-
# )
|
| 780 |
-
#
|
| 781 |
-
# # Stream logs in real-time
|
| 782 |
-
# for line in iter(process.stdout.readline, ""):
|
| 783 |
-
# log_output += line
|
| 784 |
-
# # Print to console as well for debugging
|
| 785 |
-
# print(line, end='')
|
| 786 |
-
#
|
| 787 |
-
# process.stdout.close()
|
| 788 |
-
# return_code = process.wait()
|
| 789 |
-
#
|
| 790 |
-
# # 5. Check for successful completion
|
| 791 |
-
# if return_code == 0:
|
| 792 |
-
# log_output += "\n✅ TRAINING COMPLETE! Model saved."
|
| 793 |
-
# print("\n✅ TRAINING COMPLETE! Model saved.")
|
| 794 |
-
#
|
| 795 |
-
# # 6. Verify model file exists
|
| 796 |
-
# if os.path.exists(MODEL_FILE_PATH):
|
| 797 |
-
# file_size = os.path.getsize(MODEL_FILE_PATH) / (1024 * 1024) # Size in MB
|
| 798 |
-
# log_output += f"\n📦 Model file: {MODEL_FILE_PATH}"
|
| 799 |
-
# log_output += f"\n📊 Model size: {file_size:.2f} MB"
|
| 800 |
-
#
|
| 801 |
-
# print(f"\n✅ Model exists at: {MODEL_FILE_PATH} ({file_size:.2f} MB)")
|
| 802 |
-
#
|
| 803 |
-
# # Create a copy in the root directory with timestamp for uniqueness
|
| 804 |
-
# timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 805 |
-
# download_filename = f"layoutlmv3_trained_{timestamp}.pth"
|
| 806 |
-
#
|
| 807 |
-
# try:
|
| 808 |
-
# shutil.copy2(MODEL_FILE_PATH, download_filename)
|
| 809 |
-
# log_output += f"\n📋 Download file created: {download_filename}"
|
| 810 |
-
# print(f"✅ Created download file: {download_filename}")
|
| 811 |
-
# except Exception as e:
|
| 812 |
-
# log_output += f"\n⚠️ Could not create download file: {e}"
|
| 813 |
-
# download_filename = MODEL_FILE_PATH
|
| 814 |
-
#
|
| 815 |
-
# # Return the path and make download button visible
|
| 816 |
-
# log_output += f"\n\n🎉 SUCCESS! Click the 'Download Model' button below to save your model."
|
| 817 |
-
# log_output += f"\n⚠️ IMPORTANT: Download NOW - file will be deleted when Space restarts!"
|
| 818 |
-
#
|
| 819 |
-
# return log_output, download_filename, gr.Button(visible=True)
|
| 820 |
-
# else:
|
| 821 |
-
# log_output += f"\n⚠️ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 822 |
-
# log_output += f"\n🔍 Checking directory contents..."
|
| 823 |
-
#
|
| 824 |
-
# # List files in checkpoints directory for debugging
|
| 825 |
-
# if os.path.exists(MODEL_OUTPUT_DIR):
|
| 826 |
-
# files = os.listdir(MODEL_OUTPUT_DIR)
|
| 827 |
-
# log_output += f"\n📁 Files in {MODEL_OUTPUT_DIR}: {files}"
|
| 828 |
-
# else:
|
| 829 |
-
# log_output += f"\n❌ Directory {MODEL_OUTPUT_DIR} does not exist!"
|
| 830 |
-
#
|
| 831 |
-
# return log_output, None, gr.Button(visible=False)
|
| 832 |
-
# else:
|
| 833 |
-
# log_output += f"\n\n❌ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 834 |
-
# return log_output, None, gr.Button(visible=False)
|
| 835 |
-
#
|
| 836 |
-
# except FileNotFoundError:
|
| 837 |
-
# error_msg = f"❌ ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space."
|
| 838 |
-
# print(error_msg)
|
| 839 |
-
# return error_msg, None, gr.Button(visible=False)
|
| 840 |
-
# except Exception as e:
|
| 841 |
-
# error_msg = f"❌ An unexpected error occurred: {e}"
|
| 842 |
-
# print(error_msg)
|
| 843 |
-
# import traceback
|
| 844 |
-
# print(traceback.format_exc())
|
| 845 |
-
# return error_msg, None, gr.Button(visible=False)
|
| 846 |
-
#
|
| 847 |
-
#
|
| 848 |
-
# def download_model():
|
| 849 |
-
# """
|
| 850 |
-
# Returns the model file for download.
|
| 851 |
-
# """
|
| 852 |
-
# if os.path.exists(MODEL_FILE_PATH):
|
| 853 |
-
# return MODEL_FILE_PATH
|
| 854 |
-
# else:
|
| 855 |
-
# # Check for any .pth files in current directory
|
| 856 |
-
# pth_files = [f for f in os.listdir('.') if f.endswith('.pth')]
|
| 857 |
-
# if pth_files:
|
| 858 |
-
# return pth_files[0]
|
| 859 |
-
#
|
| 860 |
-
# # Check checkpoints directory
|
| 861 |
-
# if os.path.exists(MODEL_OUTPUT_DIR):
|
| 862 |
-
# pth_files = [os.path.join(MODEL_OUTPUT_DIR, f) for f in os.listdir(MODEL_OUTPUT_DIR) if f.endswith('.pth')]
|
| 863 |
-
# if pth_files:
|
| 864 |
-
# return pth_files[0]
|
| 865 |
-
#
|
| 866 |
-
# return None
|
| 867 |
-
#
|
| 868 |
-
#
|
| 869 |
-
# # --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 870 |
-
# with gr.Blocks(title="LayoutLMv3 Fine-Tuning App", theme=gr.themes.Soft()) as demo:
|
| 871 |
-
# gr.Markdown("# 🚀 LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 872 |
-
# gr.Markdown(
|
| 873 |
-
# """
|
| 874 |
-
# Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model.
|
| 875 |
-
#
|
| 876 |
-
# **⚠️ IMPORTANT - Free Tier Users:**
|
| 877 |
-
# - **Download your model IMMEDIATELY** after training completes!
|
| 878 |
-
# - The model file is **temporary** and will be deleted when the Space restarts.
|
| 879 |
-
# - A download button will appear below once training is complete.
|
| 880 |
-
#
|
| 881 |
-
# **⏱️ Timeout Note:** Training may timeout on free tier. Consider reducing epochs or batch size for faster training.
|
| 882 |
-
# """
|
| 883 |
-
# )
|
| 884 |
-
#
|
| 885 |
-
# with gr.Row():
|
| 886 |
-
# with gr.Column(scale=1):
|
| 887 |
-
# gr.Markdown("### 📁 Dataset Upload")
|
| 888 |
-
# file_input = gr.File(
|
| 889 |
-
# label="Upload Label Studio JSON Dataset",
|
| 890 |
-
# file_types=[".json"]
|
| 891 |
-
# )
|
| 892 |
-
#
|
| 893 |
-
# gr.Markdown("---")
|
| 894 |
-
# gr.Markdown("### ⚙️ Training Parameters")
|
| 895 |
-
#
|
| 896 |
-
# batch_size_input = gr.Slider(
|
| 897 |
-
# minimum=1, maximum=16, step=1, value=4,
|
| 898 |
-
# label="Batch Size",
|
| 899 |
-
# info="Smaller = less memory, slower training"
|
| 900 |
-
# )
|
| 901 |
-
# epochs_input = gr.Slider(
|
| 902 |
-
# minimum=1, maximum=10, step=1, value=3,
|
| 903 |
-
# label="Epochs",
|
| 904 |
-
# info="Fewer epochs = faster training (recommended: 3-5)"
|
| 905 |
-
# )
|
| 906 |
-
# lr_input = gr.Number(
|
| 907 |
-
# value=5e-5, label="Learning Rate",
|
| 908 |
-
# info="Default: 5e-5"
|
| 909 |
-
# )
|
| 910 |
-
# max_len_input = gr.Slider(
|
| 911 |
-
# minimum=128, maximum=512, step=128, value=512,
|
| 912 |
-
# label="Max Sequence Length",
|
| 913 |
-
# info="Shorter = faster training, less memory"
|
| 914 |
-
# )
|
| 915 |
-
#
|
| 916 |
-
# train_button = gr.Button("🔥 Start Training", variant="primary", size="lg")
|
| 917 |
-
#
|
| 918 |
-
# with gr.Column(scale=2):
|
| 919 |
-
# gr.Markdown("### 📊 Training Progress")
|
| 920 |
-
#
|
| 921 |
-
# log_output = gr.Textbox(
|
| 922 |
-
# label="Training Logs",
|
| 923 |
-
# lines=25,
|
| 924 |
-
# max_lines=30,
|
| 925 |
-
# autoscroll=True,
|
| 926 |
-
# show_copy_button=True,
|
| 927 |
-
# placeholder="Click 'Start Training' to begin...\n\nLogs will appear here in real-time."
|
| 928 |
-
# )
|
| 929 |
-
#
|
| 930 |
-
# gr.Markdown("### ⬇️ Download Trained Model")
|
| 931 |
-
#
|
| 932 |
-
# # Hidden state to store the file path
|
| 933 |
-
# model_path_state = gr.State(value=None)
|
| 934 |
-
#
|
| 935 |
-
# # Download button (initially hidden)
|
| 936 |
-
# download_btn = gr.Button(
|
| 937 |
-
# "📥 Download Model (.pth file)",
|
| 938 |
-
# variant="primary",
|
| 939 |
-
# size="lg",
|
| 940 |
-
# visible=False
|
| 941 |
-
# )
|
| 942 |
-
#
|
| 943 |
-
# # File output for download
|
| 944 |
-
# model_download = gr.File(
|
| 945 |
-
# label="Your trained model will appear here",
|
| 946 |
-
# interactive=False,
|
| 947 |
-
# visible=True
|
| 948 |
-
# )
|
| 949 |
-
#
|
| 950 |
-
# gr.Markdown(
|
| 951 |
-
# """
|
| 952 |
-
# **📥 Download Instructions:**
|
| 953 |
-
# 1. Wait for training to complete (✅ appears in logs)
|
| 954 |
-
# 2. Click the **"Download Model"** button above
|
| 955 |
-
# 3. Save the `.pth` file to your local machine
|
| 956 |
-
# 4. **Do this immediately** - file is temporary!
|
| 957 |
-
#
|
| 958 |
-
# **🔧 Troubleshooting:**
|
| 959 |
-
# - If download button doesn't appear, check the logs for errors
|
| 960 |
-
# - Try reducing epochs or batch size if timeout occurs
|
| 961 |
-
# - Ensure your JSON file is properly formatted
|
| 962 |
-
# """
|
| 963 |
-
# )
|
| 964 |
-
#
|
| 965 |
-
# # Define the training action
|
| 966 |
-
# train_button.click(
|
| 967 |
-
# fn=train_model,
|
| 968 |
-
# inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 969 |
-
# outputs=[log_output, model_path_state, download_btn],
|
| 970 |
-
# api_name="train"
|
| 971 |
-
# )
|
| 972 |
-
#
|
| 973 |
-
# # Define the download action
|
| 974 |
-
# download_btn.click(
|
| 975 |
-
# fn=lambda path: path,
|
| 976 |
-
# inputs=[model_path_state],
|
| 977 |
-
# outputs=[model_download]
|
| 978 |
-
# )
|
| 979 |
-
#
|
| 980 |
-
# # Add example info
|
| 981 |
-
# gr.Markdown(
|
| 982 |
-
# """
|
| 983 |
-
# ---
|
| 984 |
-
# ### 📖 About
|
| 985 |
-
# This Space fine-tunes LayoutLMv3 with CRF for document understanding tasks including:
|
| 986 |
-
# - Questions, Options, Answers
|
| 987 |
-
# - Section Headings
|
| 988 |
-
# - Passages
|
| 989 |
-
#
|
| 990 |
-
# **Model Details:** LayoutLMv3-base + CRF layer for sequence labeling
|
| 991 |
-
# """
|
| 992 |
-
# )
|
| 993 |
-
#
|
| 994 |
-
# if __name__ == "__main__":
|
| 995 |
-
# demo.launch()
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
|
| 1000 |
import gradio as gr
|
| 1001 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
import gradio as gr
|
| 3 |
import subprocess
|