Spaces:
Running
Running
Commit
Β·
dc56cce
1
Parent(s):
b249ba5
app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import subprocess
|
| 3 |
+
import os
|
| 4 |
+
import sys
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
|
| 7 |
+
# The name of your existing training script
|
| 8 |
+
TRAINING_SCRIPT = "LayoutLM_Train_Passage.py"
|
| 9 |
+
|
| 10 |
+
# --- CORRECTED MODEL PATH BASED ON LayoutLM_Train_Passage.py ---
|
| 11 |
+
MODEL_OUTPUT_DIR = "checkpoints"
|
| 12 |
+
MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
|
| 13 |
+
MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# ----------------------------------------------------------------
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
|
| 20 |
+
"""
|
| 21 |
+
Handles the Gradio submission and executes the training script using subprocess.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
# 1. Setup: Create output directory if it doesn't exist
|
| 25 |
+
os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
|
| 26 |
+
|
| 27 |
+
# 2. File Handling: Use the temporary path of the uploaded file
|
| 28 |
+
if dataset_file is None or not dataset_file.path.endswith(".json"):
|
| 29 |
+
return "β ERROR: Please upload a valid Label Studio JSON file.", None
|
| 30 |
+
|
| 31 |
+
input_path = dataset_file.path
|
| 32 |
+
|
| 33 |
+
progress(0.1, desc="Starting LayoutLMv3 Training...")
|
| 34 |
+
|
| 35 |
+
log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
|
| 36 |
+
|
| 37 |
+
# 3. Construct the subprocess command
|
| 38 |
+
command = [
|
| 39 |
+
sys.executable,
|
| 40 |
+
TRAINING_SCRIPT,
|
| 41 |
+
"--mode", "train",
|
| 42 |
+
"--input", input_path,
|
| 43 |
+
"--batch_size", str(batch_size),
|
| 44 |
+
"--epochs", str(epochs),
|
| 45 |
+
"--lr", str(lr),
|
| 46 |
+
"--max_len", str(max_len)
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
log_output += f"Executing command: {' '.join(command)}\n\n"
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
# 4. Run the training script and capture output
|
| 53 |
+
process = subprocess.Popen(
|
| 54 |
+
command,
|
| 55 |
+
stdout=subprocess.PIPE,
|
| 56 |
+
stderr=subprocess.STDOUT,
|
| 57 |
+
text=True,
|
| 58 |
+
bufsize=1
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Stream logs in real-time
|
| 62 |
+
for line in iter(process.stdout.readline, ""):
|
| 63 |
+
log_output += line
|
| 64 |
+
yield log_output, None # Send partial log to Gradio output
|
| 65 |
+
|
| 66 |
+
process.stdout.close()
|
| 67 |
+
return_code = process.wait()
|
| 68 |
+
|
| 69 |
+
# 5. Check for successful completion
|
| 70 |
+
if return_code == 0:
|
| 71 |
+
log_output += "\nβ
TRAINING COMPLETE! Model saved."
|
| 72 |
+
|
| 73 |
+
# 6. Prepare download links based on script's saved path
|
| 74 |
+
model_exists = os.path.exists(MODEL_FILE_PATH)
|
| 75 |
+
|
| 76 |
+
if model_exists:
|
| 77 |
+
log_output += f"\nModel path: {MODEL_FILE_PATH}"
|
| 78 |
+
# Return final log, and the file path for Gradio's download component
|
| 79 |
+
return log_output, MODEL_FILE_PATH
|
| 80 |
+
else:
|
| 81 |
+
log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
|
| 82 |
+
return log_output, None
|
| 83 |
+
else:
|
| 84 |
+
log_output += f"\n\nβ TRAINING FAILED with return code {return_code}. Check logs above."
|
| 85 |
+
return log_output, None
|
| 86 |
+
|
| 87 |
+
except FileNotFoundError:
|
| 88 |
+
return f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space.", None
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return f"β An unexpected error occurred: {e}", None
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# --- Gradio Interface Setup (using Blocks for a nicer layout) ---
|
| 94 |
+
with gr.Blocks(title="LayoutLMv3 Fine-Tuning App") as demo:
|
| 95 |
+
gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
|
| 96 |
+
gr.Markdown(
|
| 97 |
+
"""
|
| 98 |
+
Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model using your script.
|
| 99 |
+
|
| 100 |
+
**Note:** The trained model is saved in the **`checkpoints/`** folder as **`layoutlmv3_crf_passage.pth`**.
|
| 101 |
+
"""
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
with gr.Row():
|
| 105 |
+
with gr.Column(scale=1):
|
| 106 |
+
file_input = gr.File(
|
| 107 |
+
label="1. Upload Label Studio JSON Dataset",
|
| 108 |
+
file_types=[".json"],
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
gr.Markdown("---")
|
| 112 |
+
gr.Markdown("### βοΈ Training Parameters")
|
| 113 |
+
|
| 114 |
+
batch_size_input = gr.Slider(
|
| 115 |
+
minimum=1, maximum=32, step=1, value=4, label="Batch Size (--batch_size)"
|
| 116 |
+
)
|
| 117 |
+
epochs_input = gr.Slider(
|
| 118 |
+
minimum=1, maximum=20, step=1, value=5, label="Epochs (--epochs)"
|
| 119 |
+
)
|
| 120 |
+
lr_input = gr.Number(
|
| 121 |
+
value=5e-5, label="Learning Rate (--lr)"
|
| 122 |
+
)
|
| 123 |
+
max_len_input = gr.Number(
|
| 124 |
+
value=512, label="Max Sequence Length (--max_len)"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
with gr.Column(scale=2):
|
| 128 |
+
train_button = gr.Button("π₯ Train Model", variant="primary")
|
| 129 |
+
|
| 130 |
+
log_output = gr.Textbox(
|
| 131 |
+
label="Training Log Output",
|
| 132 |
+
lines=20,
|
| 133 |
+
autoscroll=True,
|
| 134 |
+
placeholder="Click 'Train Model' to start and see real-time logs..."
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
gr.Markdown("---")
|
| 138 |
+
gr.Markdown(f"### π Trained Model Output (Saved to `{MODEL_OUTPUT_DIR}/`)")
|
| 139 |
+
|
| 140 |
+
# Only providing the download link for the saved .pth model file
|
| 141 |
+
model_download = gr.File(label=f"Trained Model File ({MODEL_FILE_NAME})", interactive=False)
|
| 142 |
+
|
| 143 |
+
# Define the action when the button is clicked
|
| 144 |
+
train_button.click(
|
| 145 |
+
fn=train_model,
|
| 146 |
+
inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
|
| 147 |
+
outputs=[log_output, model_download]
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
demo.launch(server_port=7860, server_name="0.0.0.0")
|