File size: 18,308 Bytes
58de15f
 
eb5dfea
58de15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9465d3
8595342
58de15f
 
 
 
504ddfc
58de15f
 
 
a9465d3
58de15f
bea2de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58de15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9465d3
58de15f
 
 
 
 
 
 
 
 
 
 
 
a9465d3
 
 
 
 
 
 
 
 
 
 
58de15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5dfea
 
58de15f
 
 
eb5dfea
58de15f
 
 
 
 
 
 
 
8b1b13a
8595342
 
 
67e765b
8595342
 
 
eb5dfea
 
 
8595342
eb5dfea
58de15f
 
 
 
 
 
 
 
 
bea2de8
58de15f
 
 
 
bea2de8
 
 
 
 
 
 
 
 
 
 
 
eb5dfea
 
 
 
8595342
eb5dfea
 
58de15f
 
 
bea2de8
 
 
 
 
 
 
 
58de15f
bea2de8
 
 
eb5dfea
 
 
 
a9465d3
 
58de15f
a9465d3
eb5dfea
 
58de15f
 
 
 
a9465d3
58de15f
eb5dfea
 
58de15f
eb5dfea
 
bea2de8
 
 
 
 
 
 
 
 
 
 
58de15f
 
 
eb5dfea
58de15f
 
 
eb5dfea
58de15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# app/api/v2_endpoints.py

from fastapi.concurrency import run_in_threadpool
from fastapi import APIRouter, Depends, HTTPException, Body, status
from sqlalchemy.orm import Session
import logging
import time
import uuid
from datetime import datetime
from typing import Dict, Optional, Tuple, List, Any, Set
from app.core.config import settings
import numpy as np

# --- DB Imports ---
from app.db.database import get_db
from app.db import models
from app.db import schemas

# --- Service Imports ---
from app.services import data_loader
from app.services import retrieval
from app.services import context_builder
from app.services import llm_service
# --- ADDED: Import the new reranker service ---
from app.services import reranker_service
from app.services import parts_combination_service
from app.services import query_expansion_service
# --- State Import ---
from app.core import state

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
router = APIRouter()

# --- Constants ---
CONTEXT_CHUNK_COUNT = 100
# --- MODIFIED: TOTAL_RETRIEVAL_COUNT is now the number of candidates for the re-ranker ---
RERANK_CANDIDATE_COUNT = 100

def dynamic_top_k_selection(
    reranked_docs: List[Dict[str, Any]], 
    k_min: int = 3, 
    k_max: int = 15,
    fall_off_threshold: float = 1.0 # Start with a threshold of 1.0 logit score drop
) -> List[Dict[str, Any]]:
    """
    Selects a dynamic number of documents based on score fall-off.
    """
    if not reranked_docs:
        return []

    if len(reranked_docs) <= k_min:
        return reranked_docs

    scores = np.array([doc.get('rerank_score', -float('inf')) for doc in reranked_docs])
    score_diffs = np.diff(scores) * -1 # Make differences positive as scores are descending
    
    elbow_index = -1
    # Start searching for a large fall-off after the k_min-th document
    for i in range(k_min - 1, len(score_diffs)):
        if score_diffs[i] > fall_off_threshold:
            # The drop is after this document, so we take up to and including this one.
            elbow_index = i + 1 
            break
            
    if elbow_index != -1:
        # We found a significant drop
        final_k = elbow_index
    else:
        # No significant drop found, take the max allowed
        final_k = k_max
        
    # Ensure final_k is within the [k_min, k_max] bounds and also within list size
    final_k = min(max(final_k, k_min), k_max, len(reranked_docs))
    
    logger.info(f"Dynamic K selection: Found elbow at index {elbow_index}. "
                f"Selected final K of {final_k} from {len(reranked_docs)} candidates.")
    
    return reranked_docs[:final_k]

# --- Startup Event (Loads data into state) ---
@router.on_event("startup")
async def v2_load_data_on_startup():
    """Load data and models into the central state object on startup."""
    if state.v2_data_loaded:
        logger.info("V2 data already loaded in state. Skipping.")
        return

    logger.info("--- Starting V2 Data Loading Sequence ---")
    start_time = time.time()
    load_success = True

    # Task 1: Load Retrieval Artifacts (Bi-encoder)
    logger.info("Startup Task 1: Loading retrieval artifacts (embeddings, Wq, temp)...")
    artifacts_loaded = retrieval.load_retrieval_artifacts()
    if not artifacts_loaded:
        logger.error("CRITICAL FAILURE: Failed to load retrieval artifacts.")
        load_success = False
    else:
        logger.info("Retrieval artifacts loaded successfully.")

    # Task 2: Load Content Map
    if load_success:
        logger.info("Startup Task 2: Loading Chunk Content Map...")
        if state.chunk_ids_in_order is not None:
            required_ids = set(state.chunk_ids_in_order)
            loaded_content, loaded_metadata = await data_loader.load_chunk_content_map(
                required_chunk_ids=required_ids
            )
            if loaded_content is None or loaded_metadata is None:
                logger.error("CRITICAL FAILURE: Failed to load chunk content/metadata map.")
                load_success = False
            else:
                state.chunk_content_map = loaded_content
                state.chunk_metadata_map = loaded_metadata
                logger.info(f"Chunk Content Map loading completed for {len(loaded_content)} chunks.")
        else:
             logger.warning("Skipping content loading due to artifact load failure.")

    # Task 3: Initialize LLM Client
    if load_success:
        logger.info("Startup Task 3: Initializing OpenAI Client...")
        client_initialized = llm_service.initialize_openai_client()
        if not client_initialized:
            load_success = False
            logger.error("CRITICAL FAILURE: OpenAI client failed to initialize.")
        else:
            logger.info("OpenAI Client initialization completed.")
    

    # --- ADDED: Startup Task 4: Load Re-ranker Model ---
    if load_success:
        logger.info("Startup Task 4: Loading Re-ranker Model...")
        reranker_loaded = reranker_service.load_reranker_model()
        if not reranker_loaded:
            load_success = False
            logger.error("CRITICAL FAILURE: Re-ranker model failed to initialize.")
        else:
            logger.info("Re-ranker model initialization completed.")
    # --- END OF ADDITION ---

# ...
    # --- ADDED: Startup Task 5: Load Chunk Type and Sequence Data ---
    if load_success:
        logger.info("Startup Task 5: Loading Chunk Type and Sequence Data...")
        maps_loaded = await parts_combination_service.load_chunk_type_map()
        if not maps_loaded:
            logger.warning("WARNING: Chunk Type/Sequence data failed to load.")
        else:
            logger.info("Chunk Type and Sequence Data initialization completed.")
# ...

    # Final status update
    if load_success:
        state.v2_data_loaded = True
        duration = time.time() - start_time
        logger.info(f"--- V2 Data Loading Sequence Complete. Duration: {duration:.2f} seconds ---")
    else:
        state.v2_data_loaded = False
        duration = time.time() - start_time
        logger.error(f"--- V2 Data Loading Sequence FAILED. Duration: {duration:.2f} seconds. ---")



@router.post(
    "/query",
    response_model=schemas.QueryResponse,
    summary="Process a user query using V2 GNN retrieval",
    tags=["Query"]
)
async def handle_v2_query(
    request: schemas.QueryRequest = Body(...),
    db: Session = Depends(get_db)
):
    logger.info(f"Received V2 query (Attempt 1): '{request.query[:100]}...' for session: {request.session_id}")
    start_time = time.time()

    if not state.v2_data_loaded:
        raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="Service is not ready.")
    
    # ... (session and user message creation remain the same) ...
    session_uuid, _ = await get_or_create_session(request.session_id, db)
    user_msg = models.ChatMessage(session_id=session_uuid, role=schemas.MessageRole.USER, content=request.query)
    db.add(user_msg)
    
    llm_answer = ""
    context_string = ""
    retrieved_chunk_ids = []
    used_ids_this_attempt = []
    retrieved_scores_float = []
    top_result_preview = None
    original_file = None
    try:
        # --- STEP 1: PRE-PROCESSING (Direct ABBREVIATION Replacement) ---
        original_query = request.query
        
        # --- EDIT: Call the new, direct replacement function ---
        normalized_query = query_expansion_service.replace_abbreviations(original_query)
        
        if original_query != normalized_query:
            logger.info(f"Query expanded from '{original_query}' to '{normalized_query}'")
        # --- MODIFIED: Offload the blocking retrieval function to a threadpool ---
        search_results: List[Tuple[str, float]] = await run_in_threadpool(
            retrieval.find_top_gnn_chunks,
            query_text=normalized_query,
            top_n=RERANK_CANDIDATE_COUNT
        )

        if not search_results:
            llm_answer = "Based on the available information, I could not find a specific answer to your query."
        else:
            retrieved_chunk_ids = [str(chunk_id) for chunk_id, score in search_results]
            retrieved_scores_float = [float(score) for chunk_id, score in search_results]

            candidate_chunks = []
            missing_chunk_count = 0
            for chunk_id, initial_score in search_results:
                chunk_text = state.chunk_content_map.get(str(chunk_id))
                if chunk_text:
                    candidate_chunks.append({"id": str(chunk_id), "text": chunk_text})
                else:
                    missing_chunk_count += 1
                    logger.warning(
                        f"Data consistency warning: Retrieved chunk_id '{chunk_id}' "
                        f"not found in the in-memory chunk_content_map."
                    )
            
            # --- LOGGING POINT 2: After building the candidate list ---
            logger.debug(
                f"Successfully built {len(candidate_chunks)} candidate chunks for re-ranking. "
                f"{missing_chunk_count} chunks were dropped due to missing text content."
            )

            # --- MODIFIED: Offload the blocking re-ranker function to a threadpool ---
            reranked_chunks = await run_in_threadpool(
                reranker_service.rerank_chunks,
                query=normalized_query,
                chunks=candidate_chunks,
                metadata_map=state.chunk_metadata_map
            )

            if reranked_chunks:
                filtered_chunks = dynamic_top_k_selection(
                    reranked_docs=reranked_chunks,
                    k_min=settings.RERANKER_K_MIN, # e.g., 3
                    k_max=settings.RERANKER_K_MAX, # e.g., 100
                    fall_off_threshold=settings.RERANKER_FALLOFF_THRESHOLD # e.g., 1.0
                )
                # score_threshold = settings.RERANKER_SCORE_THRESHOLD
                # filtered_chunks = [c for c in reranked_chunks if c['rerank_score'] > score_threshold]
                
                # if not filtered_chunks:
                #     logger.warning(f"No chunks met the score threshold of {score_threshold}. Using only the top-ranked chunk.")
                #     filtered_chunks = reranked_chunks[:1]

                # --- MODIFIED: Offload the blocking sequence organization to a threadpool ---
                organized_chunks = await run_in_threadpool(
                    parts_combination_service.organize_chunks_by_sequence,
                    chunks=filtered_chunks
                )
                
                final_chunks_for_context = organized_chunks[:CONTEXT_CHUNK_COUNT]
                
                # --- This function is very fast, no threadpool needed ---
                ids_for_final_context = [chunk['id'] for chunk in final_chunks_for_context]
                context_string, used_ids_this_attempt = context_builder.build_context_from_ids(
                    top_chunk_ids=ids_for_final_context
                )
                        
                if context_string:
                    # --- MODIFIED: Simply 'await' the now-async llm_service function ---
                    llm_answer = await llm_service.generate_answer(request.query, context_string)
                else:
                    llm_answer = "I found relevant documents, but could not construct an answer."
                
                top_result_preview = None
                if reranked_chunks:
                    top_chunk = reranked_chunks[0]
                    top_metadata = state.chunk_metadata_map.get(top_chunk['id'], {})
                    top_result_preview = schemas.TopResultPreview(
                        id=top_chunk['id'],
                        score=float(top_chunk['rerank_score']),
                        content_preview=top_chunk['text'][:150],
                        original_file=top_metadata.get('original_file')
                    )


            else:
                llm_answer = "Could not re-rank the search results."

    except Exception as e:
        logger.exception(f"Unexpected error during query processing: {e}")
        llm_answer = "⚠️ An unexpected error occurred."

    
    if not llm_answer: llm_answer = "⚠️ Error: No response generated."

    bot_msg = models.ChatMessage(
        session_id=session_uuid, role=schemas.MessageRole.BOT, content=llm_answer,
        original_query=request.query, retrieved_context_ids=retrieved_chunk_ids,
        used_context_ids=used_ids_this_attempt, attempt_number=1,
        cumulative_used_context_ids=used_ids_this_attempt
    )
    db.add(bot_msg)
    
    try:
        db.commit()
        db.refresh(bot_msg)
        bot_message_id = bot_msg.id
    except Exception as e:
        db.rollback(); logger.exception(f"DB commit failed: {e}")
        raise HTTPException(status_code=500, detail="Failed to save conversation messages.")

    response_details = schemas.QueryResultDetail(
        session_id=session_uuid, message_id=bot_message_id, attempt_number=1,
        retrieved_ids=retrieved_chunk_ids, search_scores=retrieved_scores_float, original_file=original_file
    )
    final_response = schemas.QueryResponse(
        llm_answer=llm_answer, context_used_preview=context_string[:200] + "..." if context_string else "No context.",
        top_result_preview=top_result_preview, details=response_details
    )
    end_time = time.time()
    logger.info(f"V2 query (Attempt 1) processed in {end_time - start_time:.2f}s")
    return final_response


async def get_or_create_session(session_id: Optional[uuid.UUID], db: Session) -> Tuple[uuid.UUID, bool]:
    is_new = False
    if session_id:
        session = db.query(models.ChatSession).filter(models.ChatSession.id == session_id).first()
        if not session:
            session_id = uuid.uuid4()
            is_new = True
    else:
        session_id = uuid.uuid4()
        is_new = True

    if is_new:
        new_db_session = models.ChatSession(id=session_id, name=f"Session {str(session_id)[:8]}")
        db.add(new_db_session)
    
    return session_id, is_new

# --- Session Management Endpoints ---
@router.post("/sessions", response_model=schemas.ChatSession, status_code=status.HTTP_201_CREATED, summary="Create", tags=["Sessions"])
async def create_v2_session(session_create: schemas.SessionCreate, db: Session = Depends(get_db)):
    logger.info(f"Creating new V2 session with name: '{session_create.name}'")
    session_uuid = uuid.uuid4()
    db_session = models.ChatSession(id=session_uuid, name=session_create.name)
    try:
        db.add(db_session); db.commit(); db.refresh(db_session)
        logger.info(f"Successfully created session {db_session.id}")
        return db_session
    except Exception as e:
        db.rollback(); logger.exception(f"Failed to create session: {e}")
        raise HTTPException(status_code=500, detail="Failed to create session")

@router.get("/sessions", response_model=List[schemas.ChatSession], summary="List", tags=["Sessions"])
async def list_v2_sessions(skip: int = 0, limit: int = 100, db: Session = Depends(get_db)):
    logger.info(f"Listing V2 sessions (skip={skip}, limit={limit})")
    sessions = db.query(models.ChatSession).order_by(models.ChatSession.created_at.desc()).offset(skip).limit(limit).all()
    return sessions

@router.patch("/sessions/{session_id}", response_model=schemas.ChatSession, summary="Rename", tags=["Sessions"])
async def rename_v2_session(session_id: uuid.UUID, session_update: schemas.ChatSessionUpdate, db: Session = Depends(get_db)):
    logger.info(f"Attempting to rename session {session_id} to '{session_update.name}'")
    db_session = db.query(models.ChatSession).filter(models.ChatSession.id == session_id).first()
    if not db_session: raise HTTPException(status_code=404, detail="Session not found")
    db_session.name = session_update.name
    try:
        db.add(db_session); db.commit(); db.refresh(db_session)
        logger.info(f"Successfully renamed session {session_id}")
        return db_session
    except Exception as e:
        db.rollback(); logger.exception(f"Failed to rename session: {e}")
        raise HTTPException(status_code=500, detail="Failed to rename session")

# --- Message Retrieval Endpoint ---
@router.get("/sessions/{session_id}/messages", response_model=List[schemas.ChatMessage], summary="Get Messages", tags=["Messages"])
async def get_v2_session_messages(session_id: uuid.UUID, db: Session = Depends(get_db)):
    logger.info(f"Fetching messages for V2 session: {session_id}")
    session = db.query(models.ChatSession).filter(models.ChatSession.id == session_id).first()
    if not session: raise HTTPException(status_code=404, detail="Session not found")
    messages = db.query(models.ChatMessage).filter(models.ChatMessage.session_id == session_id).order_by(models.ChatMessage.created_at.asc()).all()
    logger.info(f"Found {len(messages)} messages for session {session_id}.")
    return messages

# --- Feedback Endpoint ---
@router.post(
    "/feedback",
    response_model=schemas.RegeneratedResponse | schemas.FeedbackLogResponse,
    summary="Submit/Update feedback and potentially regenerate response",
    tags=["Feedback"]
)
async def submit_feedback(
    feedback_data: schemas.FeedbackCreate = Body(...),
    db: Session = Depends(get_db)
):
    logger.info(f"Received feedback submission for message_id: {feedback_data.message_id}, type: {feedback_data.feedback_type.value}")

    rated_message = db.query(models.ChatMessage).filter(models.ChatMessage.id == feedback_data.message_id).first()
    if not rated_message: raise HTTPException(status_code=404, detail="Message not found")

    db_feedback = db.query(models.FeedbackLog).filter(models.FeedbackLog.message_id == feedback_data.message_id).first()
    if db_feedback:
        db_feedback.feedback_type = feedback_data.feedback_type
        db_feedback.feedback_comment = feedback_data.feedback_comment
    else:
        db_feedback = models.FeedbackLog(**feedback_data.dict())
    
    db.add(db_feedback)
    db.commit()
    db.refresh(db_feedback)

    if feedback_data.feedback_type == schemas.FeedbackTypeEnum.REJECT:
        # Regeneration logic would go here if needed
        pass

    return db_feedback