Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
| # ๋ชจ๋ธ ๋ฐ ์ค์ ๋ก๋ | |
| def load_model(): | |
| feature_extractor = AutoFeatureExtractor.from_pretrained("xinyu1205/recognize-anything-plus-model") | |
| model = AutoModelForImageClassification.from_pretrained("xinyu1205/recognize-anything-plus-model") | |
| model.eval() | |
| return feature_extractor, model | |
| # ์์ธก ํจ์ | |
| def predict(image, feature_extractor, model): | |
| inputs = feature_extractor(images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| # ์์ 5๊ฐ ํ๊ทธ ๋ฐํ | |
| top_5 = torch.topk(logits, k=5) | |
| return [model.config.id2label[i.item()] for i in top_5.indices[0]] | |
| # Streamlit ์ฑ | |
| st.title("RAM++ Image Tagging") | |
| feature_extractor, model = load_model() | |
| uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption='Uploaded Image', use_column_width=True) | |
| if st.button('Get Tags'): | |
| tags = predict(image, feature_extractor, model) | |
| st.write("Predicted Tags:") | |
| st.write(", ".join(tags)) |