Updated app.py with email (placeholder) and transcript download functionality
Browse files
app.py
CHANGED
|
@@ -4,9 +4,10 @@ import librosa
|
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
import numpy as np
|
|
|
|
| 7 |
|
| 8 |
@spaces.GPU(duration=60)
|
| 9 |
-
def transcribe_and_respond(audio_file):
|
| 10 |
try:
|
| 11 |
pipe = transformers.pipeline(
|
| 12 |
model='sarvamai/shuka_v1',
|
|
@@ -17,43 +18,55 @@ def transcribe_and_respond(audio_file):
|
|
| 17 |
|
| 18 |
# Load the audio file at 16kHz
|
| 19 |
audio, sr = librosa.load(audio_file, sr=16000)
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
|
| 23 |
-
|
|
|
|
| 24 |
turns = [
|
| 25 |
-
{'role': 'system', 'content': '
|
| 26 |
{'role': 'user', 'content': '<|audio|>'}
|
| 27 |
]
|
| 28 |
-
|
| 29 |
-
# Debug: Print the initial turns
|
| 30 |
print(f"Initial turns: {turns}")
|
| 31 |
-
|
| 32 |
-
#
|
| 33 |
-
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=
|
| 34 |
-
|
| 35 |
-
# Debug: Print the final output from the model
|
| 36 |
print(f"Model output: {output}")
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
except Exception as e:
|
| 41 |
-
return f"Error: {str(e)}"
|
| 42 |
|
| 43 |
iface = gr.Interface(
|
| 44 |
fn=transcribe_and_respond,
|
| 45 |
inputs=[
|
| 46 |
gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
| 47 |
-
|
| 48 |
],
|
| 49 |
outputs=[
|
| 50 |
gr.Textbox(label="Transcript"),
|
| 51 |
gr.File(label="Download Transcript")
|
| 52 |
],
|
| 53 |
title="ShukaNotesApp",
|
| 54 |
-
description="
|
| 55 |
-
live=True
|
| 56 |
)
|
| 57 |
|
| 58 |
if __name__ == "__main__":
|
| 59 |
-
iface.launch()
|
|
|
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
import numpy as np
|
| 7 |
+
import tempfile
|
| 8 |
|
| 9 |
@spaces.GPU(duration=60)
|
| 10 |
+
def transcribe_and_respond(audio_file, email):
|
| 11 |
try:
|
| 12 |
pipe = transformers.pipeline(
|
| 13 |
model='sarvamai/shuka_v1',
|
|
|
|
| 18 |
|
| 19 |
# Load the audio file at 16kHz
|
| 20 |
audio, sr = librosa.load(audio_file, sr=16000)
|
| 21 |
+
# Convert the audio to a contiguous float32 array
|
| 22 |
+
audio = np.ascontiguousarray(audio, dtype=np.float32)
|
| 23 |
+
# If audio is multi-channel, convert to mono by averaging channels
|
| 24 |
+
if audio.ndim > 1:
|
| 25 |
+
audio = np.mean(audio, axis=-1)
|
| 26 |
+
|
| 27 |
+
# Debug: Print audio properties
|
| 28 |
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
|
| 29 |
+
|
| 30 |
+
# Set up the prompt to get key takeaways
|
| 31 |
turns = [
|
| 32 |
+
{'role': 'system', 'content': 'Share the Key Take Aways and Action Steps'},
|
| 33 |
{'role': 'user', 'content': '<|audio|>'}
|
| 34 |
]
|
|
|
|
|
|
|
| 35 |
print(f"Initial turns: {turns}")
|
| 36 |
+
|
| 37 |
+
# Run the model inference (this call is synchronous)
|
| 38 |
+
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=10000)
|
|
|
|
|
|
|
| 39 |
print(f"Model output: {output}")
|
| 40 |
+
|
| 41 |
+
# Extract transcript text from the output
|
| 42 |
+
transcript = str(output)
|
| 43 |
+
if email and email.strip():
|
| 44 |
+
transcript = f"Email provided: {email}\n\n{transcript}"
|
| 45 |
+
|
| 46 |
+
# Write the transcript to a temporary file for download
|
| 47 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as tmp:
|
| 48 |
+
tmp.write(transcript)
|
| 49 |
+
transcript_file = tmp.name
|
| 50 |
+
|
| 51 |
+
# Return transcript text and file download path
|
| 52 |
+
return transcript, transcript_file
|
| 53 |
|
| 54 |
except Exception as e:
|
| 55 |
+
return f"Error: {str(e)}", ""
|
| 56 |
|
| 57 |
iface = gr.Interface(
|
| 58 |
fn=transcribe_and_respond,
|
| 59 |
inputs=[
|
| 60 |
gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
| 61 |
+
gr.Textbox(label="Email", placeholder="Enter your email address (optional)")
|
| 62 |
],
|
| 63 |
outputs=[
|
| 64 |
gr.Textbox(label="Transcript"),
|
| 65 |
gr.File(label="Download Transcript")
|
| 66 |
],
|
| 67 |
title="ShukaNotesApp",
|
| 68 |
+
description="Upload or record your meeting audio, optionally provide your email, and download the transcript."
|
|
|
|
| 69 |
)
|
| 70 |
|
| 71 |
if __name__ == "__main__":
|
| 72 |
+
iface.launch()
|