⚗️ [Add] MixUp augment, not sure it can work with Mosaic
Browse files- config/data/augmentation.yaml +3 -2
- utils/data_augment.py +35 -0
- utils/dataloader.py +1 -1
config/data/augmentation.yaml
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
| 1 |
+
Mosaic: 1
|
| 2 |
+
MixUp: 1
|
| 3 |
+
RandomHorizontalFlip: 0.5
|
utils/data_augment.py
CHANGED
|
@@ -2,6 +2,7 @@ from PIL import Image
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from torchvision.transforms import functional as TF
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class Compose:
|
|
@@ -77,3 +78,37 @@ class Mosaic:
|
|
| 77 |
|
| 78 |
all_labels = torch.cat(all_labels, dim=0)
|
| 79 |
return mosaic_image, all_labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from torchvision.transforms import functional as TF
|
| 5 |
+
from torchvision.transforms.functional import to_tensor, to_pil_image
|
| 6 |
|
| 7 |
|
| 8 |
class Compose:
|
|
|
|
| 78 |
|
| 79 |
all_labels = torch.cat(all_labels, dim=0)
|
| 80 |
return mosaic_image, all_labels
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class MixUp:
|
| 84 |
+
"""Applies the MixUp augmentation to a pair of images and their corresponding boxes."""
|
| 85 |
+
|
| 86 |
+
def __init__(self, prob=0.5, alpha=1.0):
|
| 87 |
+
self.alpha = alpha
|
| 88 |
+
self.prob = prob
|
| 89 |
+
self.parent = None
|
| 90 |
+
|
| 91 |
+
def set_parent(self, parent):
|
| 92 |
+
"""Set the parent dataset object for accessing dataset methods."""
|
| 93 |
+
self.parent = parent
|
| 94 |
+
|
| 95 |
+
def __call__(self, image, boxes):
|
| 96 |
+
if torch.rand(1) >= self.prob:
|
| 97 |
+
return image, boxes
|
| 98 |
+
|
| 99 |
+
assert self.parent is not None, "Parent is not set. MixUp cannot retrieve additional data."
|
| 100 |
+
|
| 101 |
+
# Retrieve another image and its boxes randomly from the dataset
|
| 102 |
+
image2, boxes2 = self.parent.get_more_data()[0]
|
| 103 |
+
|
| 104 |
+
# Calculate the mixup lambda parameter
|
| 105 |
+
lam = np.random.beta(self.alpha, self.alpha) if self.alpha > 0 else 0.5
|
| 106 |
+
|
| 107 |
+
# Mix images
|
| 108 |
+
image1, image2 = to_tensor(image), to_tensor(image2)
|
| 109 |
+
mixed_image = lam * image1 + (1 - lam) * image2
|
| 110 |
+
|
| 111 |
+
# Mix bounding boxes
|
| 112 |
+
mixed_boxes = torch.cat([lam * boxes, (1 - lam) * boxes2])
|
| 113 |
+
|
| 114 |
+
return to_pil_image(mixed_image), mixed_boxes
|
utils/dataloader.py
CHANGED
|
@@ -10,7 +10,7 @@ from tqdm.rich import tqdm
|
|
| 10 |
import diskcache as dc
|
| 11 |
from typing import Union
|
| 12 |
from drawer import draw_bboxes
|
| 13 |
-
from data_augment import Compose, RandomHorizontalFlip, Mosaic
|
| 14 |
|
| 15 |
|
| 16 |
class YoloDataset(Dataset):
|
|
|
|
| 10 |
import diskcache as dc
|
| 11 |
from typing import Union
|
| 12 |
from drawer import draw_bboxes
|
| 13 |
+
from data_augment import Compose, RandomHorizontalFlip, Mosaic, MixUp
|
| 14 |
|
| 15 |
|
| 16 |
class YoloDataset(Dataset):
|