π [Move] the dataset helper func to tools/dataset
Browse files- tools/dataset_helper.py +103 -0
- utils/dataloader.py +10 -104
tools/dataset_helper.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from itertools import chain
|
| 4 |
+
from os import path
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def find_labels_path(dataset_path: str, phase_name: str):
|
| 11 |
+
"""
|
| 12 |
+
Find the path to label files for a specified dataset and phase(e.g. training).
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
dataset_path (str): The path to the root directory of the dataset.
|
| 16 |
+
phase_name (str): The name of the phase for which labels are being searched (e.g., "train", "val", "test").
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
Tuple[str, str]: A tuple containing the path to the labels file and the file format ("json" or "txt").
|
| 20 |
+
"""
|
| 21 |
+
json_labels_path = path.join(dataset_path, "annotations", f"instances_{phase_name}.json")
|
| 22 |
+
|
| 23 |
+
txt_labels_path = path.join(dataset_path, "label", phase_name)
|
| 24 |
+
|
| 25 |
+
if path.isfile(json_labels_path):
|
| 26 |
+
return json_labels_path, "json"
|
| 27 |
+
|
| 28 |
+
elif path.isdir(txt_labels_path):
|
| 29 |
+
txt_files = [f for f in os.listdir(txt_labels_path) if f.endswith(".txt")]
|
| 30 |
+
if txt_files:
|
| 31 |
+
return txt_labels_path, "txt"
|
| 32 |
+
|
| 33 |
+
raise FileNotFoundError("No labels found in the specified dataset path and phase name.")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def create_image_info_dict(labels_path: str) -> Tuple[Dict[str, List], Dict[str, Dict]]:
|
| 37 |
+
"""
|
| 38 |
+
Create a dictionary containing image information and annotations indexed by image ID.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
labels_path (str): The path to the annotation json file.
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
- annotations_index: A dictionary where keys are image IDs and values are lists of annotations.
|
| 45 |
+
- image_info_dict: A dictionary where keys are image file names without extension and values are image information dictionaries.
|
| 46 |
+
"""
|
| 47 |
+
with open(labels_path, "r") as file:
|
| 48 |
+
labels_data = json.load(file)
|
| 49 |
+
annotations_index = index_annotations_by_image(labels_data) # check lookup is a good name?
|
| 50 |
+
image_info_dict = {path.splitext(img["file_name"])[0]: img for img in labels_data["images"]}
|
| 51 |
+
return annotations_index, image_info_dict
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def index_annotations_by_image(data: Dict[str, Any]):
|
| 55 |
+
"""
|
| 56 |
+
Use image index to lookup every annotations
|
| 57 |
+
Args:
|
| 58 |
+
data (Dict[str, Any]): A dictionary containing annotation data.
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
Dict[int, List[Dict[str, Any]]]: A dictionary where keys are image IDs and values are lists of annotations.
|
| 62 |
+
Annotations with "iscrowd" set to True are excluded from the index.
|
| 63 |
+
|
| 64 |
+
"""
|
| 65 |
+
annotation_lookup = {}
|
| 66 |
+
for anno in data["annotations"]:
|
| 67 |
+
if anno["iscrowd"]:
|
| 68 |
+
continue
|
| 69 |
+
image_id = anno["image_id"]
|
| 70 |
+
if image_id not in annotation_lookup:
|
| 71 |
+
annotation_lookup[image_id] = []
|
| 72 |
+
annotation_lookup[image_id].append(anno)
|
| 73 |
+
return annotation_lookup
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def get_scaled_segmentation(
|
| 77 |
+
annotations: List[Dict[str, Any]], image_dimensions: Dict[str, int]
|
| 78 |
+
) -> Optional[List[List[float]]]:
|
| 79 |
+
"""
|
| 80 |
+
Scale the segmentation data based on image dimensions and return a list of scaled segmentation data.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
annotations (List[Dict[str, Any]]): A list of annotation dictionaries.
|
| 84 |
+
image_dimensions (Dict[str, int]): A dictionary containing image dimensions (height and width).
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
Optional[List[List[float]]]: A list of scaled segmentation data, where each sublist contains category_id followed by scaled (x, y) coordinates.
|
| 88 |
+
"""
|
| 89 |
+
if annotations is None:
|
| 90 |
+
return None
|
| 91 |
+
|
| 92 |
+
seg_array_with_cat = []
|
| 93 |
+
h, w = image_dimensions["height"], image_dimensions["width"]
|
| 94 |
+
for anno in annotations:
|
| 95 |
+
category_id = anno["category_id"]
|
| 96 |
+
seg_list = [item for sublist in anno["segmentation"] for item in sublist]
|
| 97 |
+
scaled_seg_data = (
|
| 98 |
+
np.array(seg_list).reshape(-1, 2) / [w, h]
|
| 99 |
+
).tolist() # make the list group in x, y pairs and scaled with image width, height
|
| 100 |
+
scaled_flat_seg_data = [category_id] + list(chain(*scaled_seg_data)) # flatten the scaled_seg_data list
|
| 101 |
+
seg_array_with_cat.append(scaled_flat_seg_data)
|
| 102 |
+
|
| 103 |
+
return seg_array_with_cat
|
utils/dataloader.py
CHANGED
|
@@ -1,116 +1,24 @@
|
|
| 1 |
-
import json
|
| 2 |
import os
|
| 3 |
-
from
|
| 4 |
-
from
|
| 5 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 6 |
|
| 7 |
import diskcache as dc
|
| 8 |
import hydra
|
| 9 |
import numpy as np
|
| 10 |
import torch
|
| 11 |
-
from data_augment import Compose, HorizontalFlip, MixUp, Mosaic, VerticalFlip
|
| 12 |
-
from drawer import draw_bboxes
|
| 13 |
from loguru import logger
|
| 14 |
from PIL import Image
|
| 15 |
from torch.utils.data import DataLoader, Dataset
|
| 16 |
from torchvision.transforms import functional as TF
|
| 17 |
from tqdm.rich import tqdm
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
phase_name (str): The name of the phase for which labels are being searched (e.g., "train", "val", "test").
|
| 27 |
-
|
| 28 |
-
Returns:
|
| 29 |
-
Tuple[str, str]: A tuple containing the path to the labels file and the file format ("json" or "txt").
|
| 30 |
-
"""
|
| 31 |
-
json_labels_path = path.join(dataset_path, "annotations", f"instances_{phase_name}.json")
|
| 32 |
-
|
| 33 |
-
txt_labels_path = path.join(dataset_path, "label", phase_name)
|
| 34 |
-
|
| 35 |
-
if path.isfile(json_labels_path):
|
| 36 |
-
return json_labels_path, "json"
|
| 37 |
-
|
| 38 |
-
elif path.isdir(txt_labels_path):
|
| 39 |
-
txt_files = [f for f in os.listdir(txt_labels_path) if f.endswith(".txt")]
|
| 40 |
-
if txt_files:
|
| 41 |
-
return txt_labels_path, "txt"
|
| 42 |
-
|
| 43 |
-
raise FileNotFoundError("No labels found in the specified dataset path and phase name.")
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
def create_image_info_dict(labels_path: str) -> Tuple[Dict[str, List], Dict[str, Dict]]:
|
| 47 |
-
"""
|
| 48 |
-
Create a dictionary containing image information and annotations indexed by image ID.
|
| 49 |
-
|
| 50 |
-
Args:
|
| 51 |
-
labels_path (str): The path to the annotation json file.
|
| 52 |
-
|
| 53 |
-
Returns:
|
| 54 |
-
- annotations_index: A dictionary where keys are image IDs and values are lists of annotations.
|
| 55 |
-
- image_info_dict: A dictionary where keys are image file names without extension and values are image information dictionaries.
|
| 56 |
-
"""
|
| 57 |
-
with open(labels_path, "r") as file:
|
| 58 |
-
labels_data = json.load(file)
|
| 59 |
-
annotations_index = index_annotations_by_image(labels_data) # check lookup is a good name?
|
| 60 |
-
image_info_dict = {path.splitext(img["file_name"])[0]: img for img in labels_data["images"]}
|
| 61 |
-
return annotations_index, image_info_dict
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
def index_annotations_by_image(data: Dict[str, Any]):
|
| 65 |
-
"""
|
| 66 |
-
Use image index to lookup every annotations
|
| 67 |
-
Args:
|
| 68 |
-
data (Dict[str, Any]): A dictionary containing annotation data.
|
| 69 |
-
|
| 70 |
-
Returns:
|
| 71 |
-
Dict[int, List[Dict[str, Any]]]: A dictionary where keys are image IDs and values are lists of annotations.
|
| 72 |
-
Annotations with "iscrowd" set to True are excluded from the index.
|
| 73 |
-
|
| 74 |
-
"""
|
| 75 |
-
annotation_lookup = {}
|
| 76 |
-
for anno in data["annotations"]:
|
| 77 |
-
if anno["iscrowd"]:
|
| 78 |
-
continue
|
| 79 |
-
image_id = anno["image_id"]
|
| 80 |
-
if image_id not in annotation_lookup:
|
| 81 |
-
annotation_lookup[image_id] = []
|
| 82 |
-
annotation_lookup[image_id].append(anno)
|
| 83 |
-
return annotation_lookup
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def get_scaled_segmentation(
|
| 87 |
-
annotations: List[Dict[str, Any]], image_dimensions: Dict[str, int]
|
| 88 |
-
) -> Optional[List[List[float]]]:
|
| 89 |
-
"""
|
| 90 |
-
Scale the segmentation data based on image dimensions and return a list of scaled segmentation data.
|
| 91 |
-
|
| 92 |
-
Args:
|
| 93 |
-
annotations (List[Dict[str, Any]]): A list of annotation dictionaries.
|
| 94 |
-
image_dimensions (Dict[str, int]): A dictionary containing image dimensions (height and width).
|
| 95 |
-
|
| 96 |
-
Returns:
|
| 97 |
-
Optional[List[List[float]]]: A list of scaled segmentation data, where each sublist contains category_id followed by scaled (x, y) coordinates.
|
| 98 |
-
"""
|
| 99 |
-
if annotations is None:
|
| 100 |
-
return None
|
| 101 |
-
|
| 102 |
-
seg_array_with_cat = []
|
| 103 |
-
h, w = image_dimensions["height"], image_dimensions["width"]
|
| 104 |
-
for anno in annotations:
|
| 105 |
-
category_id = anno["category_id"]
|
| 106 |
-
seg_list = [item for sublist in anno["segmentation"] for item in sublist]
|
| 107 |
-
scaled_seg_data = (
|
| 108 |
-
np.array(seg_list).reshape(-1, 2) / [w, h]
|
| 109 |
-
).tolist() # make the list group in x, y pairs and scaled with image width, height
|
| 110 |
-
scaled_flat_seg_data = [category_id] + list(chain(*scaled_seg_data)) # flatten the scaled_seg_data list
|
| 111 |
-
seg_array_with_cat.append(scaled_flat_seg_data)
|
| 112 |
-
|
| 113 |
-
return seg_array_with_cat
|
| 114 |
|
| 115 |
|
| 116 |
class YoloDataset(Dataset):
|
|
@@ -188,9 +96,7 @@ class YoloDataset(Dataset):
|
|
| 188 |
if not path.isfile(label_path):
|
| 189 |
continue
|
| 190 |
with open(label_path, "r") as file:
|
| 191 |
-
image_seg_annotations = [
|
| 192 |
-
list(map(float, line.strip().split())) for line in file
|
| 193 |
-
] # add a comment for this line, complicated, do you need "list", im not sure
|
| 194 |
|
| 195 |
labels = self.load_valid_labels(image_id, image_seg_annotations)
|
| 196 |
if labels is not None:
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from os import path
|
| 3 |
+
from typing import List, Tuple, Union
|
|
|
|
| 4 |
|
| 5 |
import diskcache as dc
|
| 6 |
import hydra
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
|
|
|
|
|
|
| 9 |
from loguru import logger
|
| 10 |
from PIL import Image
|
| 11 |
from torch.utils.data import DataLoader, Dataset
|
| 12 |
from torchvision.transforms import functional as TF
|
| 13 |
from tqdm.rich import tqdm
|
| 14 |
|
| 15 |
+
from tools.dataset_helper import (
|
| 16 |
+
create_image_info_dict,
|
| 17 |
+
find_labels_path,
|
| 18 |
+
get_scaled_segmentation,
|
| 19 |
+
)
|
| 20 |
+
from utils.data_augment import Compose, HorizontalFlip, MixUp, Mosaic, VerticalFlip
|
| 21 |
+
from utils.drawer import draw_bboxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
class YoloDataset(Dataset):
|
|
|
|
| 96 |
if not path.isfile(label_path):
|
| 97 |
continue
|
| 98 |
with open(label_path, "r") as file:
|
| 99 |
+
image_seg_annotations = [list(map(float, line.strip().split())) for line in file]
|
|
|
|
|
|
|
| 100 |
|
| 101 |
labels = self.load_valid_labels(image_id, image_seg_annotations)
|
| 102 |
if labels is not None:
|