✨ [New] inference with coco format
Browse files- yolo/config/dataset/dev.yaml +1 -1
- yolo/config/general.yaml +1 -1
- yolo/lazy.py +6 -10
- yolo/tools/solver.py +14 -2
- yolo/utils/logging_utils.py +45 -13
- yolo/utils/solver_utils.py +46 -0
yolo/config/dataset/dev.yaml
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
path: data/dev
|
| 2 |
train: train
|
| 3 |
-
validation:
|
| 4 |
|
| 5 |
auto_download:
|
|
|
|
| 1 |
path: data/dev
|
| 2 |
train: train
|
| 3 |
+
validation: val
|
| 4 |
|
| 5 |
auto_download:
|
yolo/config/general.yaml
CHANGED
|
@@ -9,7 +9,7 @@ out_path: runs
|
|
| 9 |
exist_ok: True
|
| 10 |
|
| 11 |
lucky_number: 10
|
| 12 |
-
use_wandb:
|
| 13 |
use_TensorBoard: False
|
| 14 |
|
| 15 |
weight: True # Path to weight or True for auto, False for no pretrained weight
|
|
|
|
| 9 |
exist_ok: True
|
| 10 |
|
| 11 |
lucky_number: 10
|
| 12 |
+
use_wandb: True
|
| 13 |
use_TensorBoard: False
|
| 14 |
|
| 15 |
weight: True # Path to weight or True for auto, False for no pretrained weight
|
yolo/lazy.py
CHANGED
|
@@ -28,18 +28,14 @@ def main(cfg: Config):
|
|
| 28 |
model = model.to(device)
|
| 29 |
|
| 30 |
vec2box = Vec2Box(model, cfg.image_size, device)
|
| 31 |
-
|
| 32 |
if cfg.task.task == "train":
|
| 33 |
-
|
| 34 |
-
trainer.solve(dataloader)
|
| 35 |
-
|
| 36 |
-
if cfg.task.task == "inference":
|
| 37 |
-
tester = ModelTester(cfg, model, vec2box, progress, device)
|
| 38 |
-
tester.solve(dataloader)
|
| 39 |
-
|
| 40 |
if cfg.task.task == "validation":
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
if __name__ == "__main__":
|
|
|
|
| 28 |
model = model.to(device)
|
| 29 |
|
| 30 |
vec2box = Vec2Box(model, cfg.image_size, device)
|
|
|
|
| 31 |
if cfg.task.task == "train":
|
| 32 |
+
solver = ModelTrainer(cfg, model, vec2box, progress, device, use_ddp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
if cfg.task.task == "validation":
|
| 34 |
+
solver = ModelValidator(cfg.task, model, vec2box, progress, device)
|
| 35 |
+
if cfg.task.task == "inference":
|
| 36 |
+
solver = ModelTester(cfg, model, vec2box, progress, device)
|
| 37 |
+
progress.start()
|
| 38 |
+
solver.solve(dataloader)
|
| 39 |
|
| 40 |
|
| 41 |
if __name__ == "__main__":
|
yolo/tools/solver.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
|
|
|
| 3 |
import time
|
| 4 |
|
| 5 |
import torch
|
| 6 |
from loguru import logger
|
|
|
|
| 7 |
from torch import Tensor
|
| 8 |
|
| 9 |
# TODO: We may can't use CUDA?
|
|
@@ -25,6 +27,7 @@ from yolo.utils.model_utils import (
|
|
| 25 |
create_scheduler,
|
| 26 |
predicts_to_json,
|
| 27 |
)
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
class ModelTrainer:
|
|
@@ -112,7 +115,7 @@ class ModelTrainer:
|
|
| 112 |
epoch_loss = self.train_one_epoch(dataloader)
|
| 113 |
self.progress.finish_one_epoch()
|
| 114 |
|
| 115 |
-
self.validator.solve(self.validation_dataloader)
|
| 116 |
|
| 117 |
|
| 118 |
class ModelTester:
|
|
@@ -187,7 +190,12 @@ class ModelValidator:
|
|
| 187 |
self.post_proccess = PostProccess(vec2box, validation_cfg.nms)
|
| 188 |
self.json_path = os.path.join(self.progress.save_path, f"predict.json")
|
| 189 |
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
# logger.info("🧪 Start Validation!")
|
| 192 |
self.model.eval()
|
| 193 |
predict_json = []
|
|
@@ -203,3 +211,7 @@ class ModelValidator:
|
|
| 203 |
self.progress.finish_one_epoch()
|
| 204 |
with open(self.json_path, "w") as f:
|
| 205 |
json.dump(predict_json, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
import sys
|
| 4 |
import time
|
| 5 |
|
| 6 |
import torch
|
| 7 |
from loguru import logger
|
| 8 |
+
from pycocotools.coco import COCO
|
| 9 |
from torch import Tensor
|
| 10 |
|
| 11 |
# TODO: We may can't use CUDA?
|
|
|
|
| 27 |
create_scheduler,
|
| 28 |
predicts_to_json,
|
| 29 |
)
|
| 30 |
+
from yolo.utils.solver_utils import calculate_ap
|
| 31 |
|
| 32 |
|
| 33 |
class ModelTrainer:
|
|
|
|
| 115 |
epoch_loss = self.train_one_epoch(dataloader)
|
| 116 |
self.progress.finish_one_epoch()
|
| 117 |
|
| 118 |
+
self.validator.solve(self.validation_dataloader, epoch_idx=epoch)
|
| 119 |
|
| 120 |
|
| 121 |
class ModelTester:
|
|
|
|
| 190 |
self.post_proccess = PostProccess(vec2box, validation_cfg.nms)
|
| 191 |
self.json_path = os.path.join(self.progress.save_path, f"predict.json")
|
| 192 |
|
| 193 |
+
sys.stdout = open(os.devnull, "w")
|
| 194 |
+
# TODO: load with config file
|
| 195 |
+
self.coco_gt = COCO("data/coco/annotations/instances_val2017.json")
|
| 196 |
+
sys.stdout = sys.__stdout__
|
| 197 |
+
|
| 198 |
+
def solve(self, dataloader, epoch_idx=-1):
|
| 199 |
# logger.info("🧪 Start Validation!")
|
| 200 |
self.model.eval()
|
| 201 |
predict_json = []
|
|
|
|
| 211 |
self.progress.finish_one_epoch()
|
| 212 |
with open(self.json_path, "w") as f:
|
| 213 |
json.dump(predict_json, f)
|
| 214 |
+
|
| 215 |
+
self.progress.run_coco()
|
| 216 |
+
result = calculate_ap(self.coco_gt, predict_json)
|
| 217 |
+
self.progress.finish_coco(result, epoch_idx)
|
yolo/utils/logging_utils.py
CHANGED
|
@@ -13,18 +13,26 @@ Example:
|
|
| 13 |
|
| 14 |
import os
|
| 15 |
import sys
|
|
|
|
| 16 |
from typing import Dict, List
|
| 17 |
|
| 18 |
import wandb
|
| 19 |
import wandb.errors.term
|
| 20 |
from loguru import logger
|
| 21 |
-
from rich.console import Console
|
| 22 |
-
from rich.progress import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
from rich.table import Table
|
| 24 |
from torch import Tensor
|
| 25 |
from torch.optim import Optimizer
|
| 26 |
|
| 27 |
from yolo.config.config import Config, YOLOLayer
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
def custom_logger(quite: bool = False):
|
|
@@ -38,20 +46,24 @@ def custom_logger(quite: bool = False):
|
|
| 38 |
)
|
| 39 |
|
| 40 |
|
| 41 |
-
class ProgressLogger:
|
| 42 |
-
def __init__(self, cfg: Config, exp_name: str):
|
| 43 |
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
| 44 |
self.quite_mode = local_rank or getattr(cfg, "quite", False)
|
| 45 |
custom_logger(self.quite_mode)
|
| 46 |
self.save_path = validate_log_directory(cfg, exp_name=cfg.name)
|
| 47 |
|
| 48 |
-
|
|
|
|
| 49 |
TextColumn("[progress.description]{task.description}"),
|
| 50 |
BarColumn(bar_width=None),
|
| 51 |
TextColumn("{task.completed:.0f}/{task.total:.0f}"),
|
| 52 |
TimeRemainingColumn(),
|
| 53 |
)
|
| 54 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
self.use_wandb = cfg.use_wandb
|
| 57 |
if self.use_wandb:
|
|
@@ -60,21 +72,32 @@ class ProgressLogger:
|
|
| 60 |
project="YOLO", resume="allow", mode="online", dir=self.save_path, id=None, name=exp_name
|
| 61 |
)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def start_train(self, num_epochs: int):
|
| 64 |
-
self.task_epoch = self.
|
| 65 |
|
| 66 |
def start_one_epoch(self, num_batches: int, optimizer: Optimizer = None, epoch_idx: int = None):
|
| 67 |
self.num_batches = num_batches
|
| 68 |
-
if self.use_wandb:
|
| 69 |
lr_values = [params["lr"] for params in optimizer.param_groups]
|
| 70 |
lr_names = ["bias", "norm", "conv"]
|
| 71 |
for lr_name, lr_value in zip(lr_names, lr_values):
|
| 72 |
self.wandb.log({f"Learning Rate/{lr_name}": lr_value}, step=epoch_idx)
|
| 73 |
-
self.batch_task = self.
|
| 74 |
|
| 75 |
def one_batch(self, loss_dict: Dict[str, Tensor] = None):
|
| 76 |
if loss_dict is None:
|
| 77 |
-
self.
|
| 78 |
return
|
| 79 |
if self.use_wandb:
|
| 80 |
for loss_name, loss_value in loss_dict.items():
|
|
@@ -84,11 +107,20 @@ class ProgressLogger:
|
|
| 84 |
for loss_name, loss_val in loss_dict.items():
|
| 85 |
loss_str += f" {loss_val:2.2f} |"
|
| 86 |
|
| 87 |
-
self.
|
| 88 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
def finish_one_epoch(self):
|
| 91 |
-
self.
|
| 92 |
|
| 93 |
def finish_train(self):
|
| 94 |
self.wandb.finish()
|
|
|
|
| 13 |
|
| 14 |
import os
|
| 15 |
import sys
|
| 16 |
+
from collections import deque
|
| 17 |
from typing import Dict, List
|
| 18 |
|
| 19 |
import wandb
|
| 20 |
import wandb.errors.term
|
| 21 |
from loguru import logger
|
| 22 |
+
from rich.console import Console, Group
|
| 23 |
+
from rich.progress import (
|
| 24 |
+
BarColumn,
|
| 25 |
+
Progress,
|
| 26 |
+
SpinnerColumn,
|
| 27 |
+
TextColumn,
|
| 28 |
+
TimeRemainingColumn,
|
| 29 |
+
)
|
| 30 |
from rich.table import Table
|
| 31 |
from torch import Tensor
|
| 32 |
from torch.optim import Optimizer
|
| 33 |
|
| 34 |
from yolo.config.config import Config, YOLOLayer
|
| 35 |
+
from yolo.utils.solver_utils import make_ap_table
|
| 36 |
|
| 37 |
|
| 38 |
def custom_logger(quite: bool = False):
|
|
|
|
| 46 |
)
|
| 47 |
|
| 48 |
|
| 49 |
+
class ProgressLogger(Progress):
|
| 50 |
+
def __init__(self, cfg: Config, exp_name: str, *args, **kwargs):
|
| 51 |
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
| 52 |
self.quite_mode = local_rank or getattr(cfg, "quite", False)
|
| 53 |
custom_logger(self.quite_mode)
|
| 54 |
self.save_path = validate_log_directory(cfg, exp_name=cfg.name)
|
| 55 |
|
| 56 |
+
progress_bar = (
|
| 57 |
+
SpinnerColumn(),
|
| 58 |
TextColumn("[progress.description]{task.description}"),
|
| 59 |
BarColumn(bar_width=None),
|
| 60 |
TextColumn("{task.completed:.0f}/{task.total:.0f}"),
|
| 61 |
TimeRemainingColumn(),
|
| 62 |
)
|
| 63 |
+
self.ap_table = Table()
|
| 64 |
+
# TODO: load maxlen by config files
|
| 65 |
+
self.ap_past_list = deque(maxlen=5)
|
| 66 |
+
super().__init__(*args, *progress_bar, **kwargs)
|
| 67 |
|
| 68 |
self.use_wandb = cfg.use_wandb
|
| 69 |
if self.use_wandb:
|
|
|
|
| 72 |
project="YOLO", resume="allow", mode="online", dir=self.save_path, id=None, name=exp_name
|
| 73 |
)
|
| 74 |
|
| 75 |
+
def update_ap_table(self, ap_list, epoch_idx=-1):
|
| 76 |
+
ap_table, ap_main = make_ap_table(ap_list, self.ap_past_list, epoch_idx)
|
| 77 |
+
self.ap_past_list.append((epoch_idx, ap_main))
|
| 78 |
+
self.ap_table = ap_table
|
| 79 |
+
|
| 80 |
+
if self.use_wandb:
|
| 81 |
+
self.wandb.log({f"mAP/AP @ .5:.95": ap_main[1], f"mAP/AP @ .5": ap_main[3]})
|
| 82 |
+
|
| 83 |
+
def get_renderable(self):
|
| 84 |
+
return Group(*self.get_renderables(), self.ap_table)
|
| 85 |
+
|
| 86 |
def start_train(self, num_epochs: int):
|
| 87 |
+
self.task_epoch = self.add_task("[cyan]Epochs [white]| Loss | Box | DFL | BCE |", total=num_epochs)
|
| 88 |
|
| 89 |
def start_one_epoch(self, num_batches: int, optimizer: Optimizer = None, epoch_idx: int = None):
|
| 90 |
self.num_batches = num_batches
|
| 91 |
+
if self.use_wandb and optimizer is not None:
|
| 92 |
lr_values = [params["lr"] for params in optimizer.param_groups]
|
| 93 |
lr_names = ["bias", "norm", "conv"]
|
| 94 |
for lr_name, lr_value in zip(lr_names, lr_values):
|
| 95 |
self.wandb.log({f"Learning Rate/{lr_name}": lr_value}, step=epoch_idx)
|
| 96 |
+
self.batch_task = self.add_task("[green]Batches", total=num_batches)
|
| 97 |
|
| 98 |
def one_batch(self, loss_dict: Dict[str, Tensor] = None):
|
| 99 |
if loss_dict is None:
|
| 100 |
+
self.update(self.batch_task, advance=1, description=f"[green]Validating")
|
| 101 |
return
|
| 102 |
if self.use_wandb:
|
| 103 |
for loss_name, loss_value in loss_dict.items():
|
|
|
|
| 107 |
for loss_name, loss_val in loss_dict.items():
|
| 108 |
loss_str += f" {loss_val:2.2f} |"
|
| 109 |
|
| 110 |
+
self.update(self.batch_task, advance=1, description=f"[green]Batches [white]{loss_str}")
|
| 111 |
+
self.update(self.task_epoch, advance=1 / self.num_batches)
|
| 112 |
+
|
| 113 |
+
def run_coco(self):
|
| 114 |
+
self.batch_task = self.add_task("[green]Run COCO", total=1)
|
| 115 |
+
|
| 116 |
+
def finish_coco(self, result, epoch_idx):
|
| 117 |
+
self.update_ap_table(result, epoch_idx)
|
| 118 |
+
self.update(self.batch_task, advance=1)
|
| 119 |
+
self.refresh()
|
| 120 |
+
self.remove_task(self.batch_task)
|
| 121 |
|
| 122 |
def finish_one_epoch(self):
|
| 123 |
+
self.remove_task(self.batch_task)
|
| 124 |
|
| 125 |
def finish_train(self):
|
| 126 |
self.wandb.finish()
|
yolo/utils/solver_utils.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
from pycocotools.coco import COCO
|
| 5 |
+
from pycocotools.cocoeval import COCOeval
|
| 6 |
+
from rich.table import Table
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def calculate_ap(coco_gt: COCO, pd_path):
|
| 10 |
+
sys.stdout = open(os.devnull, "w")
|
| 11 |
+
coco_dt = coco_gt.loadRes(pd_path)
|
| 12 |
+
coco_eval = COCOeval(coco_gt, coco_dt, "bbox")
|
| 13 |
+
coco_eval.evaluate()
|
| 14 |
+
coco_eval.accumulate()
|
| 15 |
+
coco_eval.summarize()
|
| 16 |
+
sys.stdout = sys.__stdout__
|
| 17 |
+
return coco_eval.stats
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def make_ap_table(score, past_result=[], epoch=-1):
|
| 21 |
+
ap_table = Table()
|
| 22 |
+
ap_table.add_column("Epoch", justify="center", style="white", width=5)
|
| 23 |
+
ap_table.add_column("Avg. Precision", justify="left", style="cyan")
|
| 24 |
+
ap_table.add_column("", justify="right", style="green", width=5)
|
| 25 |
+
ap_table.add_column("Avg. Recall", justify="left", style="cyan")
|
| 26 |
+
ap_table.add_column("", justify="right", style="green", width=5)
|
| 27 |
+
|
| 28 |
+
for eps, (ap_name1, ap_value1, ap_name2, ap_value2) in past_result:
|
| 29 |
+
ap_table.add_row(f"{eps: 3d}", ap_name1, f"{ap_value1:.2f}", ap_name2, f"{ap_value2:.2f}")
|
| 30 |
+
if past_result:
|
| 31 |
+
ap_table.add_row()
|
| 32 |
+
|
| 33 |
+
this_ap = ("AP @ .5:.95", score[0], "AP @ .5", score[1])
|
| 34 |
+
metrics = [
|
| 35 |
+
("AP @ .5:.95", score[0], "AR maxDets 1", score[6]),
|
| 36 |
+
("AP @ .5", score[1], "AR maxDets 10", score[7]),
|
| 37 |
+
("AP @ .75", score[2], "AR maxDets 100", score[8]),
|
| 38 |
+
("AP (small)", score[3], "AR (small)", score[9]),
|
| 39 |
+
("AP (medium)", score[4], "AR (medium)", score[10]),
|
| 40 |
+
("AP (large)", score[5], "AR (large)", score[11]),
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
for ap_name, ap_value, ar_name, ar_value in metrics:
|
| 44 |
+
ap_table.add_row(f"{epoch: 3d}", ap_name, f"{ap_value:.2f}", ar_name, f"{ar_value:.2f}")
|
| 45 |
+
|
| 46 |
+
return ap_table, this_ap
|