✨ [New] v9-s, v9-m model! new model arch& weight
Browse files- yolo/config/model/v9-m.yaml +133 -0
- yolo/config/model/v9-s.yaml +134 -0
- yolo/model/module.py +45 -20
yolo/config/model/v9-m.yaml
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
anchor:
|
| 2 |
+
reg_max: 16
|
| 3 |
+
|
| 4 |
+
model:
|
| 5 |
+
backbone:
|
| 6 |
+
- Conv:
|
| 7 |
+
args: {out_channels: 32, kernel_size: 3, stride: 2}
|
| 8 |
+
source: 0
|
| 9 |
+
- Conv:
|
| 10 |
+
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
| 11 |
+
- RepNCSPELAN:
|
| 12 |
+
args: {out_channels: 128, part_channels: 128}
|
| 13 |
+
|
| 14 |
+
- AConv:
|
| 15 |
+
args: {out_channels: 240}
|
| 16 |
+
- RepNCSPELAN:
|
| 17 |
+
args: {out_channels: 240, part_channels: 240}
|
| 18 |
+
tags: B3
|
| 19 |
+
|
| 20 |
+
- AConv:
|
| 21 |
+
args: {out_channels: 360}
|
| 22 |
+
- RepNCSPELAN:
|
| 23 |
+
args: {out_channels: 360, part_channels: 360}
|
| 24 |
+
tags: B4
|
| 25 |
+
|
| 26 |
+
- AConv:
|
| 27 |
+
args: {out_channels: 480}
|
| 28 |
+
- RepNCSPELAN:
|
| 29 |
+
args: {out_channels: 480, part_channels: 480}
|
| 30 |
+
tags: B5
|
| 31 |
+
|
| 32 |
+
neck:
|
| 33 |
+
- SPPELAN:
|
| 34 |
+
args: {out_channels: 480}
|
| 35 |
+
tags: N3
|
| 36 |
+
|
| 37 |
+
- UpSample:
|
| 38 |
+
args: {scale_factor: 2, mode: nearest}
|
| 39 |
+
- Concat:
|
| 40 |
+
source: [-1, B4]
|
| 41 |
+
- RepNCSPELAN:
|
| 42 |
+
args: {out_channels: 360, part_channels: 360}
|
| 43 |
+
tags: N4
|
| 44 |
+
|
| 45 |
+
- UpSample:
|
| 46 |
+
args: {scale_factor: 2, mode: nearest}
|
| 47 |
+
- Concat:
|
| 48 |
+
source: [-1, B3]
|
| 49 |
+
|
| 50 |
+
head:
|
| 51 |
+
- RepNCSPELAN:
|
| 52 |
+
args: {out_channels: 240, part_channels: 240}
|
| 53 |
+
tags: P3
|
| 54 |
+
|
| 55 |
+
- AConv:
|
| 56 |
+
args: {out_channels: 184}
|
| 57 |
+
- Concat:
|
| 58 |
+
source: [-1, N4]
|
| 59 |
+
- RepNCSPELAN:
|
| 60 |
+
args: {out_channels: 360, part_channels: 360}
|
| 61 |
+
tags: P4
|
| 62 |
+
|
| 63 |
+
- AConv:
|
| 64 |
+
args: {out_channels: 240}
|
| 65 |
+
- Concat:
|
| 66 |
+
source: [-1, N3]
|
| 67 |
+
- RepNCSPELAN:
|
| 68 |
+
args: {out_channels: 480, part_channels: 480}
|
| 69 |
+
tags: P5
|
| 70 |
+
|
| 71 |
+
detection:
|
| 72 |
+
- MultiheadDetection:
|
| 73 |
+
source: [P3, P4, P5]
|
| 74 |
+
tags: Main
|
| 75 |
+
args:
|
| 76 |
+
reg_max: ${model.anchor.reg_max}
|
| 77 |
+
output: True
|
| 78 |
+
|
| 79 |
+
auxiliary:
|
| 80 |
+
- CBLinear:
|
| 81 |
+
source: B3
|
| 82 |
+
args: {out_channels: [240]}
|
| 83 |
+
tags: R3
|
| 84 |
+
- CBLinear:
|
| 85 |
+
source: B4
|
| 86 |
+
args: {out_channels: [240, 360]}
|
| 87 |
+
tags: R4
|
| 88 |
+
- CBLinear:
|
| 89 |
+
source: B5
|
| 90 |
+
args: {out_channels: [240, 360, 480]}
|
| 91 |
+
tags: R5
|
| 92 |
+
|
| 93 |
+
- Conv:
|
| 94 |
+
args: {out_channels: 32, kernel_size: 3, stride: 2}
|
| 95 |
+
source: 0
|
| 96 |
+
- Conv:
|
| 97 |
+
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
| 98 |
+
- RepNCSPELAN:
|
| 99 |
+
args: {out_channels: 128, part_channels: 128}
|
| 100 |
+
|
| 101 |
+
- AConv:
|
| 102 |
+
args: {out_channels: 240}
|
| 103 |
+
- CBFuse:
|
| 104 |
+
source: [R3, R4, R5, -1]
|
| 105 |
+
args: {index: [0, 0, 0]}
|
| 106 |
+
- RepNCSPELAN:
|
| 107 |
+
args: {out_channels: 240, part_channels: 240}
|
| 108 |
+
tags: A3
|
| 109 |
+
|
| 110 |
+
- AConv:
|
| 111 |
+
args: {out_channels: 360}
|
| 112 |
+
- CBFuse:
|
| 113 |
+
source: [R4, R5, -1]
|
| 114 |
+
args: {index: [1, 1]}
|
| 115 |
+
- RepNCSPELAN:
|
| 116 |
+
args: {out_channels: 360, part_channels: 360}
|
| 117 |
+
tags: A4
|
| 118 |
+
|
| 119 |
+
- AConv:
|
| 120 |
+
args: {out_channels: 480}
|
| 121 |
+
- CBFuse:
|
| 122 |
+
source: [R5, -1]
|
| 123 |
+
args: {index: [2]}
|
| 124 |
+
- RepNCSPELAN:
|
| 125 |
+
args: {out_channels: 480, part_channels: 480}
|
| 126 |
+
tags: A5
|
| 127 |
+
|
| 128 |
+
- MultiheadDetection:
|
| 129 |
+
source: [A3, A4, A5]
|
| 130 |
+
tags: AUX
|
| 131 |
+
args:
|
| 132 |
+
reg_max: ${model.anchor.reg_max}
|
| 133 |
+
output: True
|
yolo/config/model/v9-s.yaml
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
anchor:
|
| 2 |
+
reg_max: 16
|
| 3 |
+
|
| 4 |
+
model:
|
| 5 |
+
backbone:
|
| 6 |
+
- Conv:
|
| 7 |
+
args: {out_channels: 32, kernel_size: 3, stride: 2}
|
| 8 |
+
source: 0
|
| 9 |
+
- Conv:
|
| 10 |
+
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
| 11 |
+
- ELAN:
|
| 12 |
+
args: {out_channels: 64, part_channels: 64}
|
| 13 |
+
|
| 14 |
+
- AConv:
|
| 15 |
+
args: {out_channels: 128}
|
| 16 |
+
- RepNCSPELAN:
|
| 17 |
+
args:
|
| 18 |
+
out_channels: 128
|
| 19 |
+
part_channels: 128
|
| 20 |
+
csp_args: {repeat_num: 3}
|
| 21 |
+
tags: B3 # 18
|
| 22 |
+
|
| 23 |
+
- AConv:
|
| 24 |
+
args: {out_channels: 192}
|
| 25 |
+
- RepNCSPELAN:
|
| 26 |
+
args:
|
| 27 |
+
out_channels: 192
|
| 28 |
+
part_channels: 192
|
| 29 |
+
csp_args: {repeat_num: 3}
|
| 30 |
+
tags: B4
|
| 31 |
+
|
| 32 |
+
- AConv:
|
| 33 |
+
args: {out_channels: 256}
|
| 34 |
+
- RepNCSPELAN:
|
| 35 |
+
args:
|
| 36 |
+
out_channels: 256
|
| 37 |
+
part_channels: 256
|
| 38 |
+
csp_args: {repeat_num: 3}
|
| 39 |
+
tags: B5
|
| 40 |
+
|
| 41 |
+
neck:
|
| 42 |
+
- SPPELAN:
|
| 43 |
+
args: {out_channels: 256}
|
| 44 |
+
tags: N3
|
| 45 |
+
|
| 46 |
+
- UpSample:
|
| 47 |
+
args: {scale_factor: 2, mode: nearest}
|
| 48 |
+
- Concat:
|
| 49 |
+
source: [-1, B4]
|
| 50 |
+
- RepNCSPELAN:
|
| 51 |
+
args:
|
| 52 |
+
out_channels: 192
|
| 53 |
+
part_channels: 192
|
| 54 |
+
csp_args: {repeat_num: 3}
|
| 55 |
+
tags: N4
|
| 56 |
+
|
| 57 |
+
- UpSample:
|
| 58 |
+
args: {scale_factor: 2, mode: nearest}
|
| 59 |
+
- Concat:
|
| 60 |
+
source: [-1, B3]
|
| 61 |
+
|
| 62 |
+
- RepNCSPELAN:
|
| 63 |
+
args:
|
| 64 |
+
out_channels: 128
|
| 65 |
+
part_channels: 128
|
| 66 |
+
csp_args: {repeat_num: 3}
|
| 67 |
+
tags: P3
|
| 68 |
+
- AConv:
|
| 69 |
+
args: {out_channels: 96}
|
| 70 |
+
- Concat:
|
| 71 |
+
source: [-1, N4]
|
| 72 |
+
|
| 73 |
+
- RepNCSPELAN:
|
| 74 |
+
args:
|
| 75 |
+
out_channels: 192
|
| 76 |
+
part_channels: 192
|
| 77 |
+
csp_args: {repeat_num: 3}
|
| 78 |
+
tags: P4
|
| 79 |
+
- AConv:
|
| 80 |
+
args: {out_channels: 128}
|
| 81 |
+
- Concat:
|
| 82 |
+
source: [-1, N3]
|
| 83 |
+
|
| 84 |
+
- RepNCSPELAN:
|
| 85 |
+
args:
|
| 86 |
+
out_channels: 256
|
| 87 |
+
part_channels: 256
|
| 88 |
+
csp_args: {repeat_num: 3}
|
| 89 |
+
tags: P5
|
| 90 |
+
|
| 91 |
+
detection:
|
| 92 |
+
- MultiheadDetection:
|
| 93 |
+
source: [P3, P4, P5]
|
| 94 |
+
tags: Main
|
| 95 |
+
args:
|
| 96 |
+
reg_max: ${model.anchor.reg_max}
|
| 97 |
+
output: True
|
| 98 |
+
|
| 99 |
+
head:
|
| 100 |
+
- SPPELAN:
|
| 101 |
+
source: B5
|
| 102 |
+
args: {out_channels: 256}
|
| 103 |
+
tags: A5
|
| 104 |
+
|
| 105 |
+
- UpSample:
|
| 106 |
+
args: {scale_factor: 2, mode: nearest}
|
| 107 |
+
- Concat:
|
| 108 |
+
source: [-1, B4]
|
| 109 |
+
|
| 110 |
+
- RepNCSPELAN:
|
| 111 |
+
args:
|
| 112 |
+
out_channels: 192
|
| 113 |
+
part_channels: 192
|
| 114 |
+
csp_args: {repeat_num: 3}
|
| 115 |
+
tags: A4
|
| 116 |
+
|
| 117 |
+
- UpSample:
|
| 118 |
+
args: {scale_factor: 2, mode: nearest}
|
| 119 |
+
- Concat:
|
| 120 |
+
source: [-1, B3]
|
| 121 |
+
|
| 122 |
+
- RepNCSPELAN:
|
| 123 |
+
args:
|
| 124 |
+
out_channels: 128
|
| 125 |
+
part_channels: 128
|
| 126 |
+
csp_args: {repeat_num: 3}
|
| 127 |
+
tags: A3
|
| 128 |
+
|
| 129 |
+
- MultiheadDetection:
|
| 130 |
+
source: [A3, A4, A5]
|
| 131 |
+
tags: AUX
|
| 132 |
+
args:
|
| 133 |
+
reg_max: ${model.anchor.reg_max}
|
| 134 |
+
output: True
|
yolo/model/module.py
CHANGED
|
@@ -192,6 +192,36 @@ class RepNCSP(nn.Module):
|
|
| 192 |
return self.conv3(torch.cat((x1, x2), dim=1))
|
| 193 |
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
class RepNCSPELAN(nn.Module):
|
| 196 |
"""RepNCSPELAN block combining RepNCSP blocks with ELAN structure."""
|
| 197 |
|
|
@@ -230,6 +260,21 @@ class RepNCSPELAN(nn.Module):
|
|
| 230 |
return x5
|
| 231 |
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
class ADown(nn.Module):
|
| 234 |
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
|
| 235 |
|
|
@@ -498,26 +543,6 @@ class CSPDark(nn.Module):
|
|
| 498 |
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
| 499 |
|
| 500 |
|
| 501 |
-
# ELAN
|
| 502 |
-
class ELAN(nn.Module):
|
| 503 |
-
# ELAN
|
| 504 |
-
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|
| 505 |
-
|
| 506 |
-
super().__init__()
|
| 507 |
-
|
| 508 |
-
h_channels = med_channels // 2
|
| 509 |
-
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
| 510 |
-
self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
| 511 |
-
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
|
| 512 |
-
|
| 513 |
-
def forward(self, x):
|
| 514 |
-
|
| 515 |
-
y = list(self.cv1(x).chunk(2, 1))
|
| 516 |
-
y.extend((m(y[-1])) for m in self.cb)
|
| 517 |
-
|
| 518 |
-
return self.cv2(torch.cat(y, 1))
|
| 519 |
-
|
| 520 |
-
|
| 521 |
class CSPELAN(nn.Module):
|
| 522 |
# ELAN
|
| 523 |
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|
|
|
|
| 192 |
return self.conv3(torch.cat((x1, x2), dim=1))
|
| 193 |
|
| 194 |
|
| 195 |
+
class ELAN(nn.Module):
|
| 196 |
+
"""ELAN structure."""
|
| 197 |
+
|
| 198 |
+
def __init__(
|
| 199 |
+
self,
|
| 200 |
+
in_channels: int,
|
| 201 |
+
out_channels: int,
|
| 202 |
+
part_channels: int,
|
| 203 |
+
*,
|
| 204 |
+
process_channels: Optional[int] = None,
|
| 205 |
+
**kwargs,
|
| 206 |
+
):
|
| 207 |
+
super().__init__()
|
| 208 |
+
|
| 209 |
+
if process_channels is None:
|
| 210 |
+
process_channels = part_channels // 2
|
| 211 |
+
|
| 212 |
+
self.conv1 = Conv(in_channels, part_channels, 1, **kwargs)
|
| 213 |
+
self.conv2 = Conv(part_channels // 2, process_channels, 3, padding=1, **kwargs)
|
| 214 |
+
self.conv3 = Conv(process_channels, process_channels, 3, padding=1, **kwargs)
|
| 215 |
+
self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs)
|
| 216 |
+
|
| 217 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 218 |
+
x1, x2 = self.conv1(x).chunk(2, 1)
|
| 219 |
+
x3 = self.conv2(x2)
|
| 220 |
+
x4 = self.conv3(x3)
|
| 221 |
+
x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1))
|
| 222 |
+
return x5
|
| 223 |
+
|
| 224 |
+
|
| 225 |
class RepNCSPELAN(nn.Module):
|
| 226 |
"""RepNCSPELAN block combining RepNCSP blocks with ELAN structure."""
|
| 227 |
|
|
|
|
| 260 |
return x5
|
| 261 |
|
| 262 |
|
| 263 |
+
class AConv(nn.Module):
|
| 264 |
+
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
|
| 265 |
+
|
| 266 |
+
def __init__(self, in_channels: int, out_channels: int):
|
| 267 |
+
super().__init__()
|
| 268 |
+
mid_layer = {"kernel_size": 3, "stride": 2}
|
| 269 |
+
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
|
| 270 |
+
self.conv = Conv(in_channels, out_channels, **mid_layer)
|
| 271 |
+
|
| 272 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 273 |
+
x = self.avg_pool(x)
|
| 274 |
+
x = self.conv(x)
|
| 275 |
+
return x
|
| 276 |
+
|
| 277 |
+
|
| 278 |
class ADown(nn.Module):
|
| 279 |
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
|
| 280 |
|
|
|
|
| 543 |
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
| 544 |
|
| 545 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
class CSPELAN(nn.Module):
|
| 547 |
# ELAN
|
| 548 |
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|