LaiEthanLai
HenryTsui
commited on
[π¨] Add support for displaying webcam videos with predicted bounding boxes (#27)
Browse files* β
[Pass] tests, skip drawing if graphviz not found
* β¨ [Add] Display processed webcam videos
---------
Co-authored-by: HenryTsui <54672031+henrytsui000@users.noreply.github.com>
- yolo/config/config.py +1 -0
- yolo/config/task/inference.yaml +2 -1
- yolo/tools/drawer.py +1 -3
- yolo/tools/solver.py +19 -2
yolo/config/config.py
CHANGED
|
@@ -108,6 +108,7 @@ class InferenceConfig:
|
|
| 108 |
nms: NMSConfig
|
| 109 |
data: DataConfig
|
| 110 |
fast_inference: Optional[None]
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
@dataclass
|
|
|
|
| 108 |
nms: NMSConfig
|
| 109 |
data: DataConfig
|
| 110 |
fast_inference: Optional[None]
|
| 111 |
+
save_predict: bool
|
| 112 |
|
| 113 |
|
| 114 |
@dataclass
|
yolo/config/task/inference.yaml
CHANGED
|
@@ -7,4 +7,5 @@ data:
|
|
| 7 |
data_augment: {}
|
| 8 |
nms:
|
| 9 |
min_confidence: 0.5
|
| 10 |
-
min_iou: 0.5
|
|
|
|
|
|
| 7 |
data_augment: {}
|
| 8 |
nms:
|
| 9 |
min_confidence: 0.5
|
| 10 |
+
min_iou: 0.5
|
| 11 |
+
save_predict: true
|
yolo/tools/drawer.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import random
|
| 3 |
from typing import List, Optional, Union
|
| 4 |
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
| 7 |
from loguru import logger
|
|
@@ -65,9 +66,6 @@ def draw_bboxes(
|
|
| 65 |
draw.rounded_rectangle(text_background, fill=(*color_map, 175), radius=2)
|
| 66 |
draw.text((x_min, y_min), label_text, fill="white", font=font)
|
| 67 |
|
| 68 |
-
save_image_path = os.path.join(save_path, save_name)
|
| 69 |
-
img.save(save_image_path) # Save the image with annotations
|
| 70 |
-
logger.info(f"πΎ Saved visualize image at {save_image_path}")
|
| 71 |
return img
|
| 72 |
|
| 73 |
|
|
|
|
| 2 |
import random
|
| 3 |
from typing import List, Optional, Union
|
| 4 |
|
| 5 |
+
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
from loguru import logger
|
|
|
|
| 66 |
draw.rounded_rectangle(text_background, fill=(*color_map, 175), radius=2)
|
| 67 |
draw.text((x_min, y_min), label_text, fill="white", font=font)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
| 69 |
return img
|
| 70 |
|
| 71 |
|
yolo/tools/solver.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from loguru import logger
|
| 3 |
from torch import Tensor
|
|
@@ -106,12 +108,15 @@ class ModelTester:
|
|
| 106 |
|
| 107 |
self.anchor2box = AnchorBoxConverter(cfg.model, cfg.image_size, device)
|
| 108 |
self.nms = cfg.task.nms
|
|
|
|
| 109 |
self.idx2label = cfg.class_list
|
| 110 |
-
self.save_path = save_path
|
| 111 |
|
| 112 |
def solve(self, dataloader: StreamDataLoader):
|
| 113 |
logger.info("π Start Inference!")
|
| 114 |
|
|
|
|
|
|
|
|
|
|
| 115 |
try:
|
| 116 |
for idx, images in enumerate(dataloader):
|
| 117 |
images = images.to(self.device)
|
|
@@ -119,7 +124,7 @@ class ModelTester:
|
|
| 119 |
raw_output = self.model(images)
|
| 120 |
predict, _ = self.anchor2box(raw_output[0][3:], with_logits=True)
|
| 121 |
nms_out = bbox_nms(predict, self.nms)
|
| 122 |
-
draw_bboxes(
|
| 123 |
images[0],
|
| 124 |
nms_out[0],
|
| 125 |
scaled_bbox=False,
|
|
@@ -127,6 +132,18 @@ class ModelTester:
|
|
| 127 |
save_name=f"frame{idx:03d}.png",
|
| 128 |
idx2label=self.idx2label,
|
| 129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
except (KeyboardInterrupt, Exception) as e:
|
| 131 |
dataloader.stop_event.set()
|
| 132 |
dataloader.stop()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
import torch
|
| 4 |
from loguru import logger
|
| 5 |
from torch import Tensor
|
|
|
|
| 108 |
|
| 109 |
self.anchor2box = AnchorBoxConverter(cfg.model, cfg.image_size, device)
|
| 110 |
self.nms = cfg.task.nms
|
| 111 |
+
self.save_path = save_path if getattr(cfg.task, "save_predict", True) else None
|
| 112 |
self.idx2label = cfg.class_list
|
|
|
|
| 113 |
|
| 114 |
def solve(self, dataloader: StreamDataLoader):
|
| 115 |
logger.info("π Start Inference!")
|
| 116 |
|
| 117 |
+
if dataloader.is_stream:
|
| 118 |
+
import cv2
|
| 119 |
+
import numpy as np
|
| 120 |
try:
|
| 121 |
for idx, images in enumerate(dataloader):
|
| 122 |
images = images.to(self.device)
|
|
|
|
| 124 |
raw_output = self.model(images)
|
| 125 |
predict, _ = self.anchor2box(raw_output[0][3:], with_logits=True)
|
| 126 |
nms_out = bbox_nms(predict, self.nms)
|
| 127 |
+
img = draw_bboxes(
|
| 128 |
images[0],
|
| 129 |
nms_out[0],
|
| 130 |
scaled_bbox=False,
|
|
|
|
| 132 |
save_name=f"frame{idx:03d}.png",
|
| 133 |
idx2label=self.idx2label,
|
| 134 |
)
|
| 135 |
+
logger.info(f"img size: {img.shape}")
|
| 136 |
+
if self.save_path is not None:
|
| 137 |
+
save_image_path = os.path.join(self.save_path, f"frame{idx:03d}.png")
|
| 138 |
+
img.save(save_image_path)
|
| 139 |
+
logger.info(f"πΎ Saved visualize image at {save_image_path}")
|
| 140 |
+
|
| 141 |
+
if dataloader.is_stream:
|
| 142 |
+
img = np.array(img)
|
| 143 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 144 |
+
cv2.imshow("Result", img)
|
| 145 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
| 146 |
+
break
|
| 147 |
except (KeyboardInterrupt, Exception) as e:
|
| 148 |
dataloader.stop_event.set()
|
| 149 |
dataloader.stop()
|