Spaces:
Build error
Build error
| import torch | |
| import base64 | |
| import urllib.request | |
| import gradio as gr | |
| from io import BytesIO | |
| from PIL import Image | |
| from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
| from olmocr.data.renderpdf import render_pdf_to_base64png | |
| from olmocr.prompts import build_finetuning_prompt | |
| from olmocr.prompts.anchor import get_anchor_text | |
| # Initialize the model | |
| model = Qwen2VLForConditionalGeneration.from_pretrained("allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16).eval() | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| # Function to process PDF and generate text | |
| def process_pdf(pdf_file): | |
| pdf_filename = pdf_file.name | |
| image_base64 = render_pdf_to_base64png(pdf_filename, 1, target_longest_image_dim=1024) | |
| anchor_text = get_anchor_text(pdf_filename, 1, pdf_engine="pdfreport", target_length=4000) | |
| prompt = build_finetuning_prompt(anchor_text) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": prompt}, | |
| {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| main_image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
| inputs = processor( | |
| text=[text], | |
| images=[main_image], | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = {key: value.to(device) for (key, value) in inputs.items()} | |
| output = model.generate( | |
| **inputs, | |
| temperature=0.8, | |
| max_new_tokens=1500, | |
| num_return_sequences=1, | |
| do_sample=True, | |
| ) | |
| prompt_length = inputs["input_ids"].shape[1] | |
| new_tokens = output[:, prompt_length:] | |
| text_output = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
| return text_output[0] | |
| # Create Gradio Interface | |
| iface = gr.Interface( | |
| fn=process_pdf, | |
| inputs=gr.File(label="Upload PDF"), | |
| outputs=gr.Textbox(label="Extracted Text"), | |
| title="PDF Text Extractor", | |
| description="Upload a PDF file and extract text using Qwen2-VL-7B-Instruct." | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| iface.launch() |