Grounded-Segment-Anything
/
grounded-sam-osx
/transformer_utils
/mmpose
/models
/backbones
/scnet.py
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import build_conv_layer, build_norm_layer | |
| from ..builder import BACKBONES | |
| from .resnet import Bottleneck, ResNet | |
| class SCConv(nn.Module): | |
| """SCConv (Self-calibrated Convolution) | |
| Args: | |
| in_channels (int): The input channels of the SCConv. | |
| out_channels (int): The output channel of the SCConv. | |
| stride (int): stride of SCConv. | |
| pooling_r (int): size of pooling for scconv. | |
| conv_cfg (dict): dictionary to construct and config conv layer. | |
| Default: None | |
| norm_cfg (dict): dictionary to construct and config norm layer. | |
| Default: dict(type='BN') | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| stride, | |
| pooling_r, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', momentum=0.1)): | |
| # Protect mutable default arguments | |
| norm_cfg = copy.deepcopy(norm_cfg) | |
| super().__init__() | |
| assert in_channels == out_channels | |
| self.k2 = nn.Sequential( | |
| nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r), | |
| build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(norm_cfg, in_channels)[1], | |
| ) | |
| self.k3 = nn.Sequential( | |
| build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(norm_cfg, in_channels)[1], | |
| ) | |
| self.k4 = nn.Sequential( | |
| build_conv_layer( | |
| conv_cfg, | |
| in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(norm_cfg, out_channels)[1], | |
| nn.ReLU(inplace=True), | |
| ) | |
| def forward(self, x): | |
| """Forward function.""" | |
| identity = x | |
| out = torch.sigmoid( | |
| torch.add(identity, F.interpolate(self.k2(x), | |
| identity.size()[2:]))) | |
| out = torch.mul(self.k3(x), out) | |
| out = self.k4(out) | |
| return out | |
| class SCBottleneck(Bottleneck): | |
| """SC(Self-calibrated) Bottleneck. | |
| Args: | |
| in_channels (int): The input channels of the SCBottleneck block. | |
| out_channels (int): The output channel of the SCBottleneck block. | |
| """ | |
| pooling_r = 4 | |
| def __init__(self, in_channels, out_channels, **kwargs): | |
| super().__init__(in_channels, out_channels, **kwargs) | |
| self.mid_channels = out_channels // self.expansion // 2 | |
| self.norm1_name, norm1 = build_norm_layer( | |
| self.norm_cfg, self.mid_channels, postfix=1) | |
| self.norm2_name, norm2 = build_norm_layer( | |
| self.norm_cfg, self.mid_channels, postfix=2) | |
| self.norm3_name, norm3 = build_norm_layer( | |
| self.norm_cfg, out_channels, postfix=3) | |
| self.conv1 = build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| self.mid_channels, | |
| kernel_size=1, | |
| stride=1, | |
| bias=False) | |
| self.add_module(self.norm1_name, norm1) | |
| self.k1 = nn.Sequential( | |
| build_conv_layer( | |
| self.conv_cfg, | |
| self.mid_channels, | |
| self.mid_channels, | |
| kernel_size=3, | |
| stride=self.stride, | |
| padding=1, | |
| bias=False), | |
| build_norm_layer(self.norm_cfg, self.mid_channels)[1], | |
| nn.ReLU(inplace=True)) | |
| self.conv2 = build_conv_layer( | |
| self.conv_cfg, | |
| in_channels, | |
| self.mid_channels, | |
| kernel_size=1, | |
| stride=1, | |
| bias=False) | |
| self.add_module(self.norm2_name, norm2) | |
| self.scconv = SCConv(self.mid_channels, self.mid_channels, self.stride, | |
| self.pooling_r, self.conv_cfg, self.norm_cfg) | |
| self.conv3 = build_conv_layer( | |
| self.conv_cfg, | |
| self.mid_channels * 2, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| bias=False) | |
| self.add_module(self.norm3_name, norm3) | |
| def forward(self, x): | |
| """Forward function.""" | |
| def _inner_forward(x): | |
| identity = x | |
| out_a = self.conv1(x) | |
| out_a = self.norm1(out_a) | |
| out_a = self.relu(out_a) | |
| out_a = self.k1(out_a) | |
| out_b = self.conv2(x) | |
| out_b = self.norm2(out_b) | |
| out_b = self.relu(out_b) | |
| out_b = self.scconv(out_b) | |
| out = self.conv3(torch.cat([out_a, out_b], dim=1)) | |
| out = self.norm3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| out = self.relu(out) | |
| return out | |
| class SCNet(ResNet): | |
| """SCNet backbone. | |
| Improving Convolutional Networks with Self-Calibrated Convolutions, | |
| Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Changhu Wang, Jiashi Feng, | |
| IEEE CVPR, 2020. | |
| http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf | |
| Args: | |
| depth (int): Depth of scnet, from {50, 101}. | |
| in_channels (int): Number of input image channels. Normally 3. | |
| base_channels (int): Number of base channels of hidden layer. | |
| num_stages (int): SCNet stages, normally 4. | |
| strides (Sequence[int]): Strides of the first block of each stage. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| out_indices (Sequence[int]): Output from which stages. | |
| style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
| layer is the 3x3 conv layer, otherwise the stride-two layer is | |
| the first 1x1 conv layer. | |
| deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv | |
| avg_down (bool): Use AvgPool instead of stride conv when | |
| downsampling in the bottleneck. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. | |
| norm_cfg (dict): Dictionary to construct and config norm layer. | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. | |
| zero_init_residual (bool): Whether to use zero init for last norm layer | |
| in resblocks to let them behave as identity. | |
| Example: | |
| >>> from mmpose.models import SCNet | |
| >>> import torch | |
| >>> self = SCNet(depth=50, out_indices=(0, 1, 2, 3)) | |
| >>> self.eval() | |
| >>> inputs = torch.rand(1, 3, 224, 224) | |
| >>> level_outputs = self.forward(inputs) | |
| >>> for level_out in level_outputs: | |
| ... print(tuple(level_out.shape)) | |
| (1, 256, 56, 56) | |
| (1, 512, 28, 28) | |
| (1, 1024, 14, 14) | |
| (1, 2048, 7, 7) | |
| """ | |
| arch_settings = { | |
| 50: (SCBottleneck, [3, 4, 6, 3]), | |
| 101: (SCBottleneck, [3, 4, 23, 3]) | |
| } | |
| def __init__(self, depth, **kwargs): | |
| if depth not in self.arch_settings: | |
| raise KeyError(f'invalid depth {depth} for SCNet') | |
| super().__init__(depth, **kwargs) | |