Grounded-Segment-Anything
/
grounded-sam-osx
/transformer_utils
/mmpose
/models
/backbones
/shufflenet_v2.py
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import logging | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from mmcv.cnn import ConvModule, constant_init, normal_init | |
| from torch.nn.modules.batchnorm import _BatchNorm | |
| from ..builder import BACKBONES | |
| from .base_backbone import BaseBackbone | |
| from .utils import channel_shuffle, load_checkpoint | |
| class InvertedResidual(nn.Module): | |
| """InvertedResidual block for ShuffleNetV2 backbone. | |
| Args: | |
| in_channels (int): The input channels of the block. | |
| out_channels (int): The output channels of the block. | |
| stride (int): Stride of the 3x3 convolution layer. Default: 1 | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='ReLU'). | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| stride=1, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| act_cfg=dict(type='ReLU'), | |
| with_cp=False): | |
| # Protect mutable default arguments | |
| norm_cfg = copy.deepcopy(norm_cfg) | |
| act_cfg = copy.deepcopy(act_cfg) | |
| super().__init__() | |
| self.stride = stride | |
| self.with_cp = with_cp | |
| branch_features = out_channels // 2 | |
| if self.stride == 1: | |
| assert in_channels == branch_features * 2, ( | |
| f'in_channels ({in_channels}) should equal to ' | |
| f'branch_features * 2 ({branch_features * 2}) ' | |
| 'when stride is 1') | |
| if in_channels != branch_features * 2: | |
| assert self.stride != 1, ( | |
| f'stride ({self.stride}) should not equal 1 when ' | |
| f'in_channels != branch_features * 2') | |
| if self.stride > 1: | |
| self.branch1 = nn.Sequential( | |
| ConvModule( | |
| in_channels, | |
| in_channels, | |
| kernel_size=3, | |
| stride=self.stride, | |
| padding=1, | |
| groups=in_channels, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None), | |
| ConvModule( | |
| in_channels, | |
| branch_features, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg), | |
| ) | |
| self.branch2 = nn.Sequential( | |
| ConvModule( | |
| in_channels if (self.stride > 1) else branch_features, | |
| branch_features, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg), | |
| ConvModule( | |
| branch_features, | |
| branch_features, | |
| kernel_size=3, | |
| stride=self.stride, | |
| padding=1, | |
| groups=branch_features, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None), | |
| ConvModule( | |
| branch_features, | |
| branch_features, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg)) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| if self.stride > 1: | |
| out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) | |
| else: | |
| x1, x2 = x.chunk(2, dim=1) | |
| out = torch.cat((x1, self.branch2(x2)), dim=1) | |
| out = channel_shuffle(out, 2) | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| return out | |
| class ShuffleNetV2(BaseBackbone): | |
| """ShuffleNetV2 backbone. | |
| Args: | |
| widen_factor (float): Width multiplier - adjusts the number of | |
| channels in each layer by this amount. Default: 1.0. | |
| out_indices (Sequence[int]): Output from which stages. | |
| Default: (0, 1, 2, 3). | |
| frozen_stages (int): Stages to be frozen (all param fixed). | |
| Default: -1, which means not freezing any parameters. | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='ReLU'). | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| """ | |
| def __init__(self, | |
| widen_factor=1.0, | |
| out_indices=(3, ), | |
| frozen_stages=-1, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN'), | |
| act_cfg=dict(type='ReLU'), | |
| norm_eval=False, | |
| with_cp=False): | |
| # Protect mutable default arguments | |
| norm_cfg = copy.deepcopy(norm_cfg) | |
| act_cfg = copy.deepcopy(act_cfg) | |
| super().__init__() | |
| self.stage_blocks = [4, 8, 4] | |
| for index in out_indices: | |
| if index not in range(0, 4): | |
| raise ValueError('the item in out_indices must in ' | |
| f'range(0, 4). But received {index}') | |
| if frozen_stages not in range(-1, 4): | |
| raise ValueError('frozen_stages must be in range(-1, 4). ' | |
| f'But received {frozen_stages}') | |
| self.out_indices = out_indices | |
| self.frozen_stages = frozen_stages | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.act_cfg = act_cfg | |
| self.norm_eval = norm_eval | |
| self.with_cp = with_cp | |
| if widen_factor == 0.5: | |
| channels = [48, 96, 192, 1024] | |
| elif widen_factor == 1.0: | |
| channels = [116, 232, 464, 1024] | |
| elif widen_factor == 1.5: | |
| channels = [176, 352, 704, 1024] | |
| elif widen_factor == 2.0: | |
| channels = [244, 488, 976, 2048] | |
| else: | |
| raise ValueError('widen_factor must be in [0.5, 1.0, 1.5, 2.0]. ' | |
| f'But received {widen_factor}') | |
| self.in_channels = 24 | |
| self.conv1 = ConvModule( | |
| in_channels=3, | |
| out_channels=self.in_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layers = nn.ModuleList() | |
| for i, num_blocks in enumerate(self.stage_blocks): | |
| layer = self._make_layer(channels[i], num_blocks) | |
| self.layers.append(layer) | |
| output_channels = channels[-1] | |
| self.layers.append( | |
| ConvModule( | |
| in_channels=self.in_channels, | |
| out_channels=output_channels, | |
| kernel_size=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg)) | |
| def _make_layer(self, out_channels, num_blocks): | |
| """Stack blocks to make a layer. | |
| Args: | |
| out_channels (int): out_channels of the block. | |
| num_blocks (int): number of blocks. | |
| """ | |
| layers = [] | |
| for i in range(num_blocks): | |
| stride = 2 if i == 0 else 1 | |
| layers.append( | |
| InvertedResidual( | |
| in_channels=self.in_channels, | |
| out_channels=out_channels, | |
| stride=stride, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg, | |
| with_cp=self.with_cp)) | |
| self.in_channels = out_channels | |
| return nn.Sequential(*layers) | |
| def _freeze_stages(self): | |
| if self.frozen_stages >= 0: | |
| for param in self.conv1.parameters(): | |
| param.requires_grad = False | |
| for i in range(self.frozen_stages): | |
| m = self.layers[i] | |
| m.eval() | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| def init_weights(self, pretrained=None): | |
| if isinstance(pretrained, str): | |
| logger = logging.getLogger() | |
| load_checkpoint(self, pretrained, strict=False, logger=logger) | |
| elif pretrained is None: | |
| for name, m in self.named_modules(): | |
| if isinstance(m, nn.Conv2d): | |
| if 'conv1' in name: | |
| normal_init(m, mean=0, std=0.01) | |
| else: | |
| normal_init(m, mean=0, std=1.0 / m.weight.shape[1]) | |
| elif isinstance(m, (_BatchNorm, nn.GroupNorm)): | |
| constant_init(m.weight, val=1, bias=0.0001) | |
| if isinstance(m, _BatchNorm): | |
| if m.running_mean is not None: | |
| nn.init.constant_(m.running_mean, 0) | |
| else: | |
| raise TypeError('pretrained must be a str or None. But received ' | |
| f'{type(pretrained)}') | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.maxpool(x) | |
| outs = [] | |
| for i, layer in enumerate(self.layers): | |
| x = layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| if len(outs) == 1: | |
| return outs[0] | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| super().train(mode) | |
| self._freeze_stages() | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| if isinstance(m, nn.BatchNorm2d): | |
| m.eval() | |