File size: 11,757 Bytes
dd4bee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# app/app.py
import os, sys, time, csv, re
from pathlib import Path
import yaml
import pandas as pd
import numpy as np
from dotenv import load_dotenv

load_dotenv()

ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
print("ANTHROPIC in env:", bool(os.getenv("ANTHROPIC_API_KEY")), flush=True)

if not ANTHROPIC_API_KEY:
    raise SystemExit("Missing ANTHROPIC_API_KEY in environment or .env file.")


# os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
# os.environ.setdefault("TRANSFORMERS_OFFLINE", "1")

# --- Resolve paths (works both as .py and PyInstaller .exe)
APP_DIR = Path(__file__).resolve().parent          # .../app
if hasattr(sys, "_MEIPASS"):                       
    ROOT = Path(sys._MEIPASS)                      
else:
    ROOT = APP_DIR.parent                          

CFG_PATH = ROOT / "app" / "config" / "app.yaml"
MODELS_DIR = ROOT / "models"
INDEX_DIR = ROOT / "outputs" / "index"
LOGS_DIR = ROOT / "local_logs"
DOCS_DIR = ROOT / "docs"

LOGS_DIR.mkdir(parents=True, exist_ok=True)

# --- Read config
DEFAULT_CFG = {
    "retrieval": {"top_k": 12, "evidence_shown": 3, "answerability_threshold": 0.2},
    "generator": {
        "enabled_default": False,
        "use_top_evidence": 5,
        "temperature": 0.1,
        "max_answer_sentences": 20,
        "n_ctx": 4096,
        "threads": max(2, (os.cpu_count() or 4) - 1)
    },
    "models": {
        "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
        "embedding_local_dir": None,  
        "anthropic_model": "claude-3-5-sonnet-latest"
    },
    "ui": {"show_online_badge": True, "performance_mode": "standard"}  # quick|standard
}
cfg = DEFAULT_CFG
if CFG_PATH.exists():
    cfg = {**cfg, **yaml.safe_load(CFG_PATH.read_text(encoding="utf-8"))}

# --- Load FAISS index & embeddings
import faiss
from sentence_transformers import SentenceTransformer

META_PATH = INDEX_DIR / "meta.parquet"
FAISS_PATH = INDEX_DIR / "chunks.faiss"

if not META_PATH.exists() or not FAISS_PATH.exists():
    raise SystemExit("Index not found. Ensure outputs/index/meta.parquet and chunks.faiss exist.")

df = pd.read_parquet(META_PATH)
df["text"] = df["text"].fillna("").astype(str)

#loading sentence transformer
emb_dir = cfg["models"].get("embedding_local_dir")
if emb_dir:
    EMBED_MODEL_PATH = Path(emb_dir)
    if not EMBED_MODEL_PATH.exists():
        raise SystemExit(f"Embedding model folder not found: {EMBED_MODEL_PATH}")
    embed_model = SentenceTransformer(str(EMBED_MODEL_PATH), trust_remote_code=False)
else:
    
    embed_model = SentenceTransformer(cfg["models"]["embedding_model"], trust_remote_code=False)

index = faiss.read_index(str(FAISS_PATH))

def _format_citation(row):
    p = int(row["page"]) if pd.notna(row.get("page")) else None
    return f"{row['title']} (p.{p})" if p else f"{row['title']}"

def retrieve(query, top_k=6):
    qv = embed_model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype("float32")
    scores, idxs = index.search(qv, top_k)
    out = []
    for s, ix in zip(scores[0], idxs[0]):
        r = df.iloc[int(ix)]
        out.append({
            "score": float(s),
            "citation": _format_citation(r),
            "doc_id": r.get("doc_id", ""),
            "page": None if pd.isna(r.get("page")) else int(r["page"]),
            "chunk_id": int(r["chunk_id"]),
            "text": r["text"]
        })
    return out

# Anthropic (Claude) LLM
from anthropic import Anthropic, APIError

ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
if not ANTHROPIC_API_KEY:
    raise SystemExit("Missing ANTHROPIC_API_KEY environment variable.")

anthropic_client = Anthropic(api_key=ANTHROPIC_API_KEY)
CLAUDE_MODEL = cfg["models"].get("anthropic_model", "claude-3-5-sonnet-latest")

SYSTEM_PROMPT = (
    "You are a careful assistant for clinicians. "
    "Use ONLY the provided context to answer. "
    "Be concise. Add inline citations like [1], [2] matching the numbered context. "
    "If the context does not fully answer, provide the best supported guidance you can, and point to the closest relevant passages with citations"
)

def _citations_valid(text, k):
    nums = set(int(n) for n in re.findall(r"\[(\d+)\]", text))
    return bool(nums) and all(1 <= n <= k for n in nums)

def _join_cites(nums):
    nums = [f"[{n}]" for n in nums]
    if not nums:
        return ""
    if len(nums) == 1:
        return nums[0]
    return ", ".join(nums[:-1]) + " and " + nums[-1]

def _make_context_block(ctx, use_n):
    blocks = []
    for i, c in enumerate(ctx[:use_n], 1):
        blocks.append(f"[{i}] {c['citation']}\n{c['text']}\n")
    return "\n".join(blocks)

def generate_answer(question, ctx, use_n, temp=0.1, max_sentences=6):
    context_text = _make_context_block(ctx, use_n)
    user_prompt = (
        f"Context:\n\n{context_text}\n\n"
        f"Question: {question}\n"
        "Answer using ONLY the context above and cite with [1], [2], etc."
    )
    try:
        resp = anthropic_client.messages.create(
            model=CLAUDE_MODEL,
            system=SYSTEM_PROMPT,
            max_tokens=600,
            temperature=float(temp),
            messages=[{"role": "user", "content": [{"type": "text", "text": user_prompt}]}],
        )
    except APIError as e:
        return f"_API error from Anthropic: {e}_"

    # Claude returns a list of content blocks
    parts = []
    for blk in resp.content:
        if blk.type == "text":
            parts.append(blk.text)
    full = ("\n".join(parts)).strip()

    # # Log raw model output to console for debugging
    # print("\n===== RAW MODEL OUTPUT =====\n", full, "\n============================\n", flush=True)

    # Trim to ~N sentences to keep it short for testers
    sents = re.split(r'(?<=[.!?])\s+', full)
    short = " ".join(sents[:max_sentences]).strip()
    return short

# gradio
import gradio as gr
ONLINE_BADGE = "Standards of Practice & Code of Ethics" if cfg["ui"].get("show_online_badge", True) else ""
def _top_sentences(text, n=3):
    sents = re.split(r'(?<=[.!?])\s+', text.strip())
    return [s for s in sents if s][:n]

def answer_extractive(query, k=6, per_chunk_sents=2):
    ctx = retrieve(query, top_k=k)
    bullets, refs = [], []
    for i, c in enumerate(ctx, 1):
        for s in _top_sentences(c["text"], per_chunk_sents):
            bullets.append(f"- {s} [{i}]")
        refs.append(f"[{i}] {c['citation']}")
    if not bullets:
        return "I couldn’t find relevant text in the corpus.", refs
    return "\n".join(bullets) + "\n\nSources:\n" + "\n".join(refs), refs

def app_infer(question, do_generate, mode):
    start = time.time()
    if not question or not question.strip():
        return "", "", "", f"{ONLINE_BADGE}  Ready."

    # Retrieval
    top_k = int(cfg["retrieval"]["top_k"])
    shown = int(cfg["retrieval"]["evidence_shown"])
    use_n = int(cfg["generator"]["use_top_evidence"])
    if mode == "quick":
        shown = min(3, shown)
        use_n = min(3, use_n)

    ctx = retrieve(question, top_k=top_k)

    # Prepare evidence panel (currently hidden as shown == 0)
    if shown > 0:
        ev_md_lines = []
        for i, c in enumerate(ctx[:shown], 1):
            title = c["citation"]
            pg = f" (p.{c['page']})" if c["page"] else ""
            body = c["text"].strip()
            body_short = body if len(body) <= 1200 else body[:1200] + "..."
            ev_md_lines.append(f"**[{i}] {title}**\n\n{body_short}\n")
        evidence_md = "\n---\n".join(ev_md_lines)
    else:
        evidence_md = ""  
    # Decide if we should generate?
    answer = ""
    sources_md = ""
    conf = float(ctx[0]["score"]) if ctx else 0.0
    threshold = float(cfg["retrieval"].get("answerability_threshold", 0.01))

    if not ctx:
        status = f"{ONLINE_BADGE}  No evidence found."
        return evidence_md, answer, sources_md, status

    if do_generate and conf >= threshold:
        draft = generate_answer(
            question=question,
            ctx=ctx,
            use_n=use_n,
            temp=float(cfg["generator"]["temperature"]),
            max_sentences=int(cfg["generator"]["max_answer_sentences"])
        )
        # Validate citations
        # if not _citations_valid(draft, min(use_n, len(ctx))):
        #     answer = "_Not enough evidence to generate a reliable summary. See Evidence below._"
        # else:
        #     answer = draft
        
        if not _citations_valid(draft, min(use_n, len(ctx))):
            extractive, _ = answer_extractive(question, k=use_n, per_chunk_sents=2)
            answer = extractive
        else:
            answer = draft



    elif do_generate and conf < threshold:
        answer = "_Not enough evidence—see Evidence below._"

    # Sources list
    src_lines = [f"[{i}] {c['citation']}" for i, c in enumerate(ctx[:use_n], 1)]
    sources_md = "Sources:\n" + "\n".join(src_lines)
    if answer:
        a = answer.strip()
        if not a.lower().startswith("answer:"):
            answer = f"Answer: {a}"

    dur = time.time() - start
    status = f"{ONLINE_BADGE}  Done in {dur:.1f}s (conf={conf:.2f})."
    return evidence_md, answer, sources_md, status

def save_feedback(question, rating, note, answer_shown):
    fpath = LOGS_DIR / "feedback.csv"
    new = not fpath.exists()
    with fpath.open("a", newline="", encoding="utf-8") as f:
        w = csv.writer(f)
        if new:
            w.writerow(["timestamp","question","rating","note","answer_shown"])
        w.writerow([time.strftime("%Y-%m-%d %H:%M:%S"), question, rating, note, "yes" if answer_shown else "no"])
    return "Feedback saved. Thank you!"

APP_CSS = """
:root{
  --app-font: system-ui, -apple-system, "Segoe UI", Roboto, Helvetica, Arial,
              "Apple Color Emoji","Segoe UI Emoji";
}
body, .gradio-container { font-family: var(--app-font) !important; }
/* make reading nicer */
.gr-markdown { font-size: 16px; line-height: 1.6; }
.gr-markdown h2 { font-size: 18px; margin-top: 0.6rem; }
.gr-textbox textarea { font-size: 16px; }
"""

with gr.Blocks(title="Clinician Q&A", theme="soft", css=APP_CSS) as demo:
    gr.Markdown(f"## Clinician Q&A   {'&nbsp;&nbsp;'+ONLINE_BADGE if ONLINE_BADGE else ''}")
    with gr.Row():
        with gr.Column(scale=1):
            q = gr.Textbox(label="Ask a question", placeholder="e.g., When can confidentiality be broken?")
            do_gen = gr.Checkbox(value=cfg["generator"]["enabled_default"], label="Use LLM")
            mode = gr.Radio(choices=["standard","quick"], value=cfg["ui"].get("performance_mode","standard"), label="Performance mode")
            run = gr.Button("Answer", variant="primary")
            rating = gr.Radio(choices=["Helpful","Not sure","Incorrect"], label="Feedback", value=None)
            note = gr.Textbox(label="Add a note (optional)")
            submit = gr.Button("Submit feedback")
            status = gr.Markdown("Ready.")
        with gr.Column(scale=1):
            ans = gr.Markdown(label="Answer")
            ev = gr.Markdown(label="Evidence")
            src = gr.Markdown(label="Sources")

    run.click(app_infer, inputs=[q, do_gen, mode], outputs=[ ans,ev,src, status])
    submit.click(lambda question, r, n, a: save_feedback(question, r, n, bool(a and a.strip())),
                 inputs=[q, rating, note, ans], outputs=[status])

# if __name__ == "__main__":
#     # Bind to localhost only; opens a browser tab automatically.
#     demo.launch(server_name="127.0.0.1", server_port=7860, inbrowser=True, show_error=True)

if __name__ == "__main__":
    # In cloud (HF Spaces), bind to 0.0.0.0 and respect PORT if provided.
    port = int(os.getenv("PORT", "7860"))
    host = "0.0.0.0"
    demo.queue(max_size=32).launch(server_name=host, server_port=port, show_error=True)