Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForCausalLM, MarianMTModel, MarianTokenizer | |
| from PIL import Image | |
| import torch | |
| import matplotlib.pyplot as plt | |
| from gtts import gTTS | |
| from IPython.display import Audio | |
| # Funções auxiliares | |
| def prepare_image(image_path): | |
| image = Image.open(image_path).convert("RGB") | |
| inputs = processor(images=image, return_tensors="pt").to(device) | |
| return image, inputs.pixel_values | |
| def generate_caption(pixel_values): | |
| model.eval() | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| pixel_values=pixel_values, | |
| max_length=50, | |
| num_beams=4, | |
| early_stopping=True, | |
| no_repeat_ngram_size=2 | |
| ) | |
| return processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| def translate_to_portuguese(text): | |
| inputs = translation_tokenizer(text, return_tensors="pt", truncation=True).to(device) | |
| translated_ids = translation_model.generate(inputs["input_ids"], max_length=50, num_beams=4, early_stopping=True) | |
| return translation_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0] | |
| def text_to_speech_gtts(text, lang='pt'): | |
| tts = gTTS(text=text, lang=lang) | |
| tts.save("output.mp3") | |
| return "output.mp3" | |
| # Carregar os modelos | |
| processor = AutoProcessor.from_pretrained("microsoft/git-large-textcaps") | |
| model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-textcaps") | |
| translation_model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt' | |
| translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name) | |
| translation_model = MarianMTModel.from_pretrained(translation_model_name) | |
| # Configurar o dispositivo (GPU ou CPU) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| translation_model.to(device) | |
| # Função principal para processar a imagem e gerar a voz | |
| def image_to_voice(image): | |
| image, pixel_values = prepare_image(image) | |
| caption_en = generate_caption(pixel_values) | |
| caption_pt = translate_to_portuguese(caption_en) | |
| audio_file = text_to_speech_gtts(caption_pt) | |
| return caption_pt, audio_file | |
| # Interface Gradio | |
| demo = gr.Interface( | |
| fn=image_to_voice, | |
| inputs=gr.inputs.Image(type="filepath"), | |
| outputs=[gr.outputs.Textbox(), gr.outputs.Audio(type="file")], | |
| title="Image to Voice", | |
| description="Gera uma descrição em português e a converte em voz a partir de uma imagem." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |