Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,195 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
from gtts import gTTS
|
| 6 |
-
import spacy
|
| 7 |
-
import requests
|
| 8 |
-
import nltk.tree
|
| 9 |
-
import re
|
| 10 |
import os
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
nlp = spacy.load("pt_core_news_sm")
|
| 14 |
-
|
| 15 |
-
# Chave para o LX-Parser
|
| 16 |
-
key = "eb159d39469d84f0ff47167a4d89cada"
|
| 17 |
-
|
| 18 |
-
# Funções de manipulação gramatical
|
| 19 |
-
def invert_adj_n(doc, tags):
|
| 20 |
-
frase = []
|
| 21 |
-
already = False
|
| 22 |
-
for i in range(len(doc)):
|
| 23 |
-
if already:
|
| 24 |
-
already = False
|
| 25 |
-
continue
|
| 26 |
-
if doc[i].tag_ != "PUNCT":
|
| 27 |
-
if tags[i] == "A":
|
| 28 |
-
if i + 1 < len(tags) and tags[i + 1] == "N":
|
| 29 |
-
frase.append(doc[i + 1].text)
|
| 30 |
-
frase.append(doc[i].text)
|
| 31 |
-
already = True
|
| 32 |
-
else:
|
| 33 |
-
frase.append(doc[i].text)
|
| 34 |
-
else:
|
| 35 |
-
frase.append(doc[i].text)
|
| 36 |
-
else:
|
| 37 |
-
frase.append(doc[i].text)
|
| 38 |
-
return frase
|
| 39 |
-
|
| 40 |
-
def adjust_adj(doc, tags):
|
| 41 |
-
frase = []
|
| 42 |
-
for i in range(len(doc)):
|
| 43 |
-
frase.append(doc[i].text)
|
| 44 |
-
if tags[i] == "A":
|
| 45 |
-
if i + 1 < len(tags) and tags[i + 1] == "A":
|
| 46 |
-
frase.append("e")
|
| 47 |
-
return frase
|
| 48 |
-
|
| 49 |
-
def adjust_art(doc, tags):
|
| 50 |
-
frase = []
|
| 51 |
-
already = False
|
| 52 |
-
for i in range(len(doc)):
|
| 53 |
-
if already:
|
| 54 |
-
already = False
|
| 55 |
-
continue
|
| 56 |
-
text = doc[i].text
|
| 57 |
-
if tags[i] == "ART" and text.lower() == "a":
|
| 58 |
-
if i + 1 < len(doc):
|
| 59 |
-
gender = doc[i + 1].morph.get("Gender")
|
| 60 |
-
number = doc[i + 1].morph.get("Number")
|
| 61 |
-
if gender and number:
|
| 62 |
-
if gender[0] == "Masc" and number[0] == "Sing":
|
| 63 |
-
frase.append("um")
|
| 64 |
-
elif gender[0] == "Fem" and number[0] == "Sing":
|
| 65 |
-
frase.append("uma")
|
| 66 |
-
elif gender[0] == "Masc" and number[0] != "Sing":
|
| 67 |
-
frase.append("os")
|
| 68 |
-
else:
|
| 69 |
-
frase.append("as")
|
| 70 |
-
else:
|
| 71 |
-
frase.append(text)
|
| 72 |
-
else:
|
| 73 |
-
frase.append(text)
|
| 74 |
-
else:
|
| 75 |
-
frase.append(text)
|
| 76 |
-
return frase
|
| 77 |
-
|
| 78 |
-
def create_sentence(doc, tags, frase):
|
| 79 |
-
tmp = frase
|
| 80 |
-
for i in range(len(doc)):
|
| 81 |
-
text = doc[i].text
|
| 82 |
-
if doc[i].is_sent_start:
|
| 83 |
-
tmp[i] = tmp[i].capitalize()
|
| 84 |
-
if doc[i].tag_ == "PUNCT":
|
| 85 |
-
tmp[i - 1] += text
|
| 86 |
-
return tmp
|
| 87 |
-
|
| 88 |
-
def get_productions(texto):
|
| 89 |
-
format = 'parentheses'
|
| 90 |
-
url = "https://portulanclarin.net/workbench/lx-parser/api/"
|
| 91 |
-
request_data = {
|
| 92 |
-
'method': 'parse',
|
| 93 |
-
'jsonrpc': '2.0',
|
| 94 |
-
'id': 0,
|
| 95 |
-
'params': {
|
| 96 |
-
'text': texto,
|
| 97 |
-
'format': format,
|
| 98 |
-
'key': key,
|
| 99 |
-
},
|
| 100 |
-
}
|
| 101 |
-
request = requests.post(url, json=request_data)
|
| 102 |
-
response_data = request.json()
|
| 103 |
-
if "error" in response_data:
|
| 104 |
-
print("Error:", response_data["error"])
|
| 105 |
-
return []
|
| 106 |
-
else:
|
| 107 |
-
result = response_data["result"]
|
| 108 |
-
productions = []
|
| 109 |
-
tree = nltk.tree.Tree.fromstring(result)
|
| 110 |
-
for tag in tree.productions():
|
| 111 |
-
if len(re.findall(r"'.*'", str(tag))) > 0:
|
| 112 |
-
productions.append(str(tag))
|
| 113 |
-
return productions
|
| 114 |
-
|
| 115 |
-
def get_tags(productions):
|
| 116 |
-
tags = []
|
| 117 |
-
for item in productions:
|
| 118 |
-
if isinstance(item, str):
|
| 119 |
-
tags.append(item[:item.find(' ->')])
|
| 120 |
-
else:
|
| 121 |
-
tags.append(item)
|
| 122 |
-
for item in tags:
|
| 123 |
-
if "'" in item:
|
| 124 |
-
tags.remove(item)
|
| 125 |
-
return tags
|
| 126 |
-
|
| 127 |
-
def reordenar_sentenca(sentenca):
|
| 128 |
-
if not sentenca.strip():
|
| 129 |
-
return sentenca
|
| 130 |
-
sentenca = sentenca.lower()
|
| 131 |
-
sentence = get_productions(sentenca)
|
| 132 |
-
tags = get_tags(sentence)
|
| 133 |
-
doc = nlp(sentenca)
|
| 134 |
-
if tags[0] != "ART":
|
| 135 |
-
sentenca = "A " + sentenca.strip()
|
| 136 |
-
sentence = get_productions(sentenca)
|
| 137 |
-
tags = get_tags(sentence)
|
| 138 |
-
doc = nlp(sentenca)
|
| 139 |
-
if not sentence:
|
| 140 |
-
return sentenca.strip()
|
| 141 |
-
aux = []
|
| 142 |
-
if len(tags) > 2 and tags[1] == "N" and tags[2] == "N":
|
| 143 |
-
aux = sentenca.split()
|
| 144 |
-
tmp = aux[1]
|
| 145 |
-
aux[1] = aux[2]
|
| 146 |
-
aux.insert(2, "de")
|
| 147 |
-
aux[3] = tmp
|
| 148 |
-
sentenca = " ".join(aux)
|
| 149 |
-
sentence = get_productions(sentenca)
|
| 150 |
-
tags = get_tags(sentence)
|
| 151 |
-
doc = nlp(sentenca)
|
| 152 |
-
frase = []
|
| 153 |
-
already = False
|
| 154 |
-
person = 3
|
| 155 |
-
tmp_doc = []
|
| 156 |
-
for token in doc:
|
| 157 |
-
tmp_doc.append(token)
|
| 158 |
-
frase = invert_adj_n(tmp_doc, tags)
|
| 159 |
-
nova_sentenca = ' '.join(frase)
|
| 160 |
-
productions = get_productions(nova_sentenca)
|
| 161 |
-
tags = get_tags(productions)
|
| 162 |
-
doc = nlp(nova_sentenca)
|
| 163 |
-
while nova_sentenca != sentenca:
|
| 164 |
-
frase = invert_adj_n(doc, tags)
|
| 165 |
-
sentenca = nova_sentenca
|
| 166 |
-
nova_sentenca = ' '.join(frase)
|
| 167 |
-
productions = get_productions(nova_sentenca)
|
| 168 |
-
tags = get_tags(productions)
|
| 169 |
-
doc = nlp(nova_sentenca)
|
| 170 |
-
frase = adjust_adj(doc, tags)
|
| 171 |
-
nova_sentenca = ' '.join(frase)
|
| 172 |
-
productions = get_productions(nova_sentenca)
|
| 173 |
-
tags = get_tags(productions)
|
| 174 |
-
doc = nlp(nova_sentenca)
|
| 175 |
-
while nova_sentenca != sentenca:
|
| 176 |
-
frase = adjust_adj(doc, tags)
|
| 177 |
-
sentenca = nova_sentenca
|
| 178 |
-
nova_sentenca = ' '.join(frase)
|
| 179 |
-
productions = get_productions(nova_sentenca)
|
| 180 |
-
tags = get_tags(productions)
|
| 181 |
-
doc = nlp(nova_sentenca)
|
| 182 |
-
frase = adjust_art(doc, tags)
|
| 183 |
-
sentenca = ' '.join(frase)
|
| 184 |
-
productions = get_productions(sentenca)
|
| 185 |
-
tags = get_tags(productions)
|
| 186 |
-
doc = nlp(sentenca)
|
| 187 |
-
frase = create_sentence(doc, tags, frase)
|
| 188 |
-
sentenca_normalizada = ""
|
| 189 |
-
for i in range(len(frase)):
|
| 190 |
-
sentenca_normalizada += frase[i] + " "
|
| 191 |
-
return sentenca_normalizada.strip()
|
| 192 |
-
|
| 193 |
def prepare_image(image_path):
|
| 194 |
image = Image.open(image_path).convert("RGB")
|
| 195 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
@@ -207,40 +23,48 @@ def generate_caption(pixel_values):
|
|
| 207 |
)
|
| 208 |
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
def text_to_speech_gtts(text, lang='pt'):
|
| 211 |
tts = gTTS(text=text, lang=lang)
|
| 212 |
tts.save("output.mp3")
|
| 213 |
return "output.mp3"
|
| 214 |
|
| 215 |
# Carregar os modelos
|
| 216 |
-
processor = AutoProcessor.from_pretrained("
|
| 217 |
-
model = AutoModelForCausalLM.from_pretrained("
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
# Configurar o dispositivo (GPU ou CPU)
|
| 220 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 221 |
model.to(device)
|
|
|
|
| 222 |
|
| 223 |
# Função principal para processar a imagem e gerar a voz
|
| 224 |
def process_image(image):
|
| 225 |
_, pixel_values = prepare_image(image)
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
audio_file = text_to_speech_gtts(
|
| 229 |
-
|
| 230 |
-
return sentenca_normalizada, productions, audio_file
|
| 231 |
|
| 232 |
-
# Caminhos para as imagens de exemplo
|
| 233 |
example_image_paths = [
|
| 234 |
-
"example1.
|
| 235 |
-
"example2.
|
| 236 |
-
"example3.
|
| 237 |
]
|
| 238 |
|
| 239 |
# Interface Gradio
|
| 240 |
iface = gr.Interface(
|
| 241 |
fn=process_image,
|
| 242 |
inputs=gr.Image(type="filepath"),
|
| 243 |
-
outputs=[gr.Textbox(
|
| 244 |
examples=example_image_paths,
|
| 245 |
title="Image to Voice",
|
| 246 |
description="Gera uma descrição em português e a converte em voz a partir de uma imagem."
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, MarianMTModel, MarianTokenizer
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
from gtts import gTTS
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import os
|
| 7 |
|
| 8 |
+
# Funções auxiliares
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def prepare_image(image_path):
|
| 10 |
image = Image.open(image_path).convert("RGB")
|
| 11 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
|
| 23 |
)
|
| 24 |
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 25 |
|
| 26 |
+
def translate_to_portuguese(text):
|
| 27 |
+
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True).to(device)
|
| 28 |
+
translated_ids = translation_model.generate(inputs["input_ids"], max_length=50, num_beams=4, early_stopping=True)
|
| 29 |
+
return translation_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0]
|
| 30 |
+
|
| 31 |
def text_to_speech_gtts(text, lang='pt'):
|
| 32 |
tts = gTTS(text=text, lang=lang)
|
| 33 |
tts.save("output.mp3")
|
| 34 |
return "output.mp3"
|
| 35 |
|
| 36 |
# Carregar os modelos
|
| 37 |
+
processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base")
|
| 39 |
+
translation_model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
|
| 40 |
+
translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
| 41 |
+
translation_model = MarianMTModel.from_pretrained(translation_model_name)
|
| 42 |
|
| 43 |
# Configurar o dispositivo (GPU ou CPU)
|
| 44 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 45 |
model.to(device)
|
| 46 |
+
translation_model.to(device)
|
| 47 |
|
| 48 |
# Função principal para processar a imagem e gerar a voz
|
| 49 |
def process_image(image):
|
| 50 |
_, pixel_values = prepare_image(image)
|
| 51 |
+
caption_en = generate_caption(pixel_values)
|
| 52 |
+
caption_pt = translate_to_portuguese(caption_en)
|
| 53 |
+
audio_file = text_to_speech_gtts(caption_pt)
|
| 54 |
+
return caption_pt, audio_file
|
|
|
|
| 55 |
|
| 56 |
+
# Caminhos para as imagens de exemplo (supondo que estejam no mesmo diretório que o script)
|
| 57 |
example_image_paths = [
|
| 58 |
+
"example1.png",
|
| 59 |
+
"example2.png",
|
| 60 |
+
"example3.png"
|
| 61 |
]
|
| 62 |
|
| 63 |
# Interface Gradio
|
| 64 |
iface = gr.Interface(
|
| 65 |
fn=process_image,
|
| 66 |
inputs=gr.Image(type="filepath"),
|
| 67 |
+
outputs=[gr.Textbox(), gr.Audio(type="filepath")],
|
| 68 |
examples=example_image_paths,
|
| 69 |
title="Image to Voice",
|
| 70 |
description="Gera uma descrição em português e a converte em voz a partir de uma imagem."
|