Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import pandas as pd | |
| import streamlit as st | |
| import argparse | |
| import traceback | |
| from typing import Dict | |
| import requests | |
| from utils.utils import load_data_split | |
| from nsql.database import NeuralDB | |
| from nsql.nsql_exec import NSQLExecutor | |
| from nsql.nsql_exec_python import NPythonExecutor | |
| from generation.generator import Generator | |
| import time | |
| ROOT_DIR = os.path.join(os.path.dirname(__file__), "./") | |
| EXAMPLE_TABLES = { | |
| "Estonia men's national volleyball team": (558, "what are the total number of players from france?"), | |
| "Highest mountain peaks of California": (5, "which is the lowest mountain?"), | |
| "2010β11 UAB Blazers men's basketball team": (1, "how many players come from alabama?"), | |
| "1999 European Tour": (209, "how many consecutive times was south africa the host country?"), | |
| "Nissan SR20DET": (438, "which car is the only one with more than 230 hp?"), | |
| } | |
| def load_data(): | |
| return load_data_split("missing_squall", "validation") | |
| def get_key(): | |
| # print the public IP of the demo machine | |
| ip = requests.get('https://checkip.amazonaws.com').text.strip() | |
| print(ip) | |
| URL = "http://54.242.37.195:20217/api/predict" | |
| # The springboard machine we built to protect the key, 20217 is the birthday of Tianbao's girlfriend | |
| # we will only let the demo machine have the access to the keys | |
| one_key = requests.post(url=URL, json={"data": "Hi, binder server. Give me a key!"}).json()['data'][0] | |
| return one_key | |
| def read_markdown(path): | |
| with open(path, "r") as f: | |
| output = f.read() | |
| st.markdown(output, unsafe_allow_html=True) | |
| def generate_binder_program(_args, _generator, _data_item): | |
| n_shots = _args.n_shots | |
| few_shot_prompt = _generator.build_few_shot_prompt_from_file( | |
| file_path=_args.prompt_file, | |
| n_shots=n_shots | |
| ) | |
| generate_prompt = _generator.build_generate_prompt( | |
| data_item=_data_item, | |
| generate_type=(_args.generate_type,) | |
| ) | |
| prompt = few_shot_prompt + "\n\n" + generate_prompt | |
| # Ensure the input length fit Codex max input tokens by shrinking the n_shots | |
| max_prompt_tokens = _args.max_api_total_tokens - _args.max_generation_tokens | |
| from transformers import AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=os.path.join(ROOT_DIR, "utils", "gpt2")) | |
| while len(tokenizer.tokenize(prompt)) >= max_prompt_tokens: # TODO: Add shrink rows | |
| n_shots -= 1 | |
| assert n_shots >= 0 | |
| few_shot_prompt = _generator.build_few_shot_prompt_from_file( | |
| file_path=_args.prompt_file, | |
| n_shots=n_shots | |
| ) | |
| prompt = few_shot_prompt + "\n\n" + generate_prompt | |
| response_dict = _generator.generate_one_pass( | |
| prompts=[("0", prompt)], # the "0" is the place taker, take effect only when there are multi threads | |
| verbose=_args.verbose | |
| ) | |
| print(response_dict) | |
| return response_dict["0"][0][0] | |
| # Set up | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--prompt_file', type=str, default='templates/prompts/prompt_wikitq_v3.txt') | |
| # Binder program generation options | |
| parser.add_argument('--prompt_style', type=str, default='create_table_select_3_full_table', | |
| choices=['create_table_select_3_full_table', | |
| 'create_table_select_full_table', | |
| 'create_table_select_3', | |
| 'create_table', | |
| 'create_table_select_3_full_table_w_all_passage_image', | |
| 'create_table_select_3_full_table_w_gold_passage_image', | |
| 'no_table']) | |
| parser.add_argument('--generate_type', type=str, default='nsql', | |
| choices=['nsql', 'sql', 'answer', 'npython', 'python']) | |
| parser.add_argument('--n_shots', type=int, default=14) | |
| parser.add_argument('--seed', type=int, default=42) | |
| # Codex options | |
| # todo: Allow adjusting Codex parameters | |
| parser.add_argument('--engine', type=str, default="code-davinci-002") | |
| parser.add_argument('--max_generation_tokens', type=int, default=512) | |
| parser.add_argument('--max_api_total_tokens', type=int, default=8001) | |
| parser.add_argument('--temperature', type=float, default=0.) | |
| parser.add_argument('--sampling_n', type=int, default=1) | |
| parser.add_argument('--top_p', type=float, default=1.0) | |
| parser.add_argument('--stop_tokens', type=str, default='\n\n', | |
| help='Split stop tokens by ||') | |
| parser.add_argument('--qa_retrieve_pool_file', type=str, default='templates/qa_retrieve_pool.json') | |
| # debug options | |
| parser.add_argument('-v', '--verbose', action='store_false') | |
| args = parser.parse_args() | |
| keys = [get_key()] | |
| # The title | |
| st.markdown("# Binder Playground") | |
| # Summary about Binder | |
| read_markdown('resources/summary.md') | |
| # Introduction of Binder | |
| # todo: Write Binder introduction here | |
| # read_markdown('resources/introduction.md') | |
| st.image('resources/intro.png') | |
| # Upload tables/Switch tables | |
| st.markdown('### Try Binder!') | |
| col1, _ = st.columns(2) | |
| with col1: | |
| selected_table_title = st.selectbox( | |
| "Select an example table", | |
| ( | |
| "Estonia men's national volleyball team", | |
| "Highest mountain peaks of California", | |
| "2010β11 UAB Blazers men's basketball team", | |
| "1999 European Tour", | |
| "Nissan SR20DET", | |
| ) | |
| ) | |
| # Here we just use ourselves' | |
| data_items = load_data() | |
| data_item = data_items[EXAMPLE_TABLES[selected_table_title][0]] | |
| table = data_item['table'] | |
| header, rows, title = table['header'], table['rows'], table['page_title'] | |
| db = NeuralDB( | |
| [{"title": title, "table": table}]) # todo: try to cache this db instead of re-creating it again and again. | |
| df = db.get_table_df() | |
| st.markdown("Title: {}".format(title)) | |
| st.dataframe(df) | |
| # Let user input the question | |
| question = st.text_input( | |
| "Ask a question about the table:", | |
| value=EXAMPLE_TABLES[selected_table_title][1] | |
| ) | |
| with col1: | |
| # todo: Why selecting language will flush the page? | |
| selected_language = st.selectbox( | |
| "Select a programming language", | |
| ("SQL", "Python"), | |
| ) | |
| if selected_language == 'SQL': | |
| args.prompt_file = 'templates/prompts/prompt_wikitq_v3.txt' | |
| args.generate_type = 'nsql' | |
| elif selected_language == 'Python': | |
| args.prompt_file = 'templates/prompts/prompt_wikitq_python_simplified_v4.txt' | |
| args.generate_type = 'npython' | |
| else: | |
| raise ValueError(f'{selected_language} language is not supported.') | |
| button = st.button("Generate program") | |
| if not button: | |
| st.stop() | |
| # Generate Binder Program | |
| generator = Generator(args, keys=keys) | |
| with st.spinner("Generating program ..."): | |
| binder_program = generate_binder_program(args, generator, | |
| {"question": question, "table": db.get_table_df(), "title": title}) | |
| # Do execution | |
| st.markdown("#### Binder program") | |
| if selected_language == 'SQL': | |
| with st.container(): | |
| st.write(binder_program) | |
| executor = NSQLExecutor(args, keys=keys) | |
| elif selected_language == 'Python': | |
| st.code(binder_program, language='python') | |
| executor = NPythonExecutor(args, keys=keys) | |
| db = db.get_table_df() | |
| else: | |
| raise ValueError(f'{selected_language} language is not supported.') | |
| try: | |
| os.makedirs('tmp_for_vis/', exist_ok=True) | |
| with st.spinner("Executing program ..."): | |
| exec_answer = executor.nsql_exec(binder_program, db) | |
| # todo: Make it more pretty! | |
| # todo: Do we need vis for Python? | |
| if selected_language == 'SQL': | |
| with open("tmp_for_vis/tmp_for_vis_steps.txt", "r") as f: | |
| steps = json.load(f) | |
| st.markdown("#### Steps & Intermediate results") | |
| for i, step in enumerate(steps): | |
| st.markdown(step) | |
| st.text("β") | |
| with st.spinner('...'): | |
| time.sleep(1) | |
| with open("tmp_for_vis/result_step_{}.txt".format(i), "r") as f: | |
| result_in_this_step = json.load(f) | |
| if isinstance(result_in_this_step, Dict): | |
| st.dataframe(pd.DataFrame(pd.DataFrame(result_in_this_step["rows"], columns=result_in_this_step["header"]))) | |
| else: | |
| st.markdown(result_in_this_step) | |
| st.text("β") | |
| elif selected_language == 'Python': | |
| pass | |
| if isinstance(exec_answer, list) and len(exec_answer) == 1: | |
| exec_answer = exec_answer[0] | |
| st.markdown(f'Execution answer: {exec_answer}') | |
| except Exception as e: | |
| traceback.print_exc() | |