Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| MAX_MAX_NEW_TOKENS = 4096 | |
| DEFAULT_MAX_NEW_TOKENS = 2048 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| DESCRIPTION = """\ | |
| # CantoneseLLM Chat | |
| Please join our [Discord server](https://discord.gg/gG6GPp8XxQ) and give me your feedback | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| if torch.cuda.is_available(): | |
| model_id = "hon9kon9ize/CantoneseLLMChat-v1.0-7B" | |
| model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) | |
| model = torch.compile(model) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| tokenizer.use_default_system_prompt = False | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str, | |
| max_new_tokens: int = 2048, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> str: | |
| conversation = [] | |
| conversation.append({"role": "system", "content": system_prompt if system_prompt else "你係由 hon9kon9ize 開發嘅 CantoneseLLM,你係一個好幫得手嘅助理" }) | |
| for user, assistant in chat_history: | |
| conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
| conversation.append({"role": "user", "content": message}) | |
| print(chat_history) | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors='pt') | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| output_ids = model.generate( | |
| input_ids, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty | |
| ) | |
| response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) | |
| return response | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox(label="System prompt", lines=6), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.2, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["如果我食咗早餐,我就唔會肚餓。我今日冇肚餓,咁我今日食咗早餐未?"], | |
| ["小明有5粒糖,小華有3粒糖。如果小明畀咗一粒糖俾小華,咁佢哋兩個一共仲有幾多粒糖?"], | |
| ["咩嘢係氣候變化?"], | |
| ["香港最高嘅山係邊坐山?"], | |
| ["人體最重要嘅器官係咩?"] | |
| ], | |
| ) | |
| with gr.Blocks() as demo: | |
| gr.Markdown(DESCRIPTION) | |
| chat_interface.render() | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |