Spaces:
Build error
Build error
| #!/usr/bin/env python | |
| """ | |
| This script runs a Gradio App for the Open-Sora model. | |
| Usage: | |
| python demo.py <config-path> | |
| """ | |
| import argparse | |
| import datetime | |
| import importlib | |
| import os | |
| import subprocess | |
| import sys | |
| from tempfile import NamedTemporaryFile | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| MODEL_TYPES = ["v1.2-stage3"] | |
| WATERMARK_PATH = "./assets/images/watermark/watermark.png" | |
| CONFIG_MAP = { | |
| "v1.2-stage3": "configs/opensora-v1-2/inference/sample.py", | |
| } | |
| HF_STDIT_MAP = {"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"} | |
| # ============================ | |
| # Prepare Runtime Environment | |
| # ============================ | |
| def install_dependencies(enable_optimization=False): | |
| """ | |
| Install the required dependencies for the demo if they are not already installed. | |
| """ | |
| def _is_package_available(name) -> bool: | |
| try: | |
| importlib.import_module(name) | |
| return True | |
| except (ImportError, ModuleNotFoundError): | |
| return False | |
| if enable_optimization: | |
| # install flash attention | |
| if not _is_package_available("flash_attn"): | |
| subprocess.run( | |
| f"{sys.executable} -m pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| # install apex for fused layernorm | |
| if not _is_package_available("apex"): | |
| subprocess.run( | |
| f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git', | |
| shell=True, | |
| ) | |
| # install ninja | |
| if not _is_package_available("ninja"): | |
| subprocess.run(f"{sys.executable} -m pip install ninja", shell=True) | |
| # install xformers | |
| if not _is_package_available("xformers"): | |
| subprocess.run( | |
| f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers", | |
| shell=True, | |
| ) | |
| # ============================ | |
| # Model-related | |
| # ============================ | |
| def read_config(config_path): | |
| """ | |
| Read the configuration file. | |
| """ | |
| from mmengine.config import Config | |
| return Config.fromfile(config_path) | |
| def build_models(model_type, config, enable_optimization=False): | |
| """ | |
| Build the models for the given model type and configuration. | |
| """ | |
| # build vae | |
| from opensora.registry import MODELS, build_module | |
| vae = build_module(config.vae, MODELS).cuda() | |
| # build text encoder | |
| text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32 | |
| text_encoder.t5.model = text_encoder.t5.model.cuda() | |
| # build stdit | |
| # we load model from HuggingFace directly so that we don't need to | |
| # handle model download logic in HuggingFace Space | |
| from opensora.models.stdit.stdit3 import STDiT3 | |
| stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type]) | |
| stdit = stdit.cuda() | |
| # build scheduler | |
| from opensora.registry import SCHEDULERS | |
| scheduler = build_module(config.scheduler, SCHEDULERS) | |
| # hack for classifier-free guidance | |
| text_encoder.y_embedder = stdit.y_embedder | |
| # move modelst to device | |
| vae = vae.to(torch.bfloat16).eval() | |
| text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32 | |
| stdit = stdit.to(torch.bfloat16).eval() | |
| # clear cuda | |
| torch.cuda.empty_cache() | |
| return vae, text_encoder, stdit, scheduler | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model-type", | |
| default="v1.2-stage3", | |
| choices=MODEL_TYPES, | |
| help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}", | |
| ) | |
| parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder") | |
| parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.") | |
| parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.") | |
| parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.") | |
| parser.add_argument( | |
| "--enable-optimization", | |
| action="store_true", | |
| help="Whether to enable optimization such as flash attention and fused layernorm", | |
| ) | |
| return parser.parse_args() | |
| # ============================ | |
| # Main Gradio Script | |
| # ============================ | |
| # as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text | |
| # so we can't pass the models to `run_inference` as arguments. | |
| # instead, we need to define them globally so that we can access these models inside `run_inference` | |
| # read config | |
| args = parse_args() | |
| config = read_config(CONFIG_MAP[args.model_type]) | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| # make outputs dir | |
| os.makedirs(args.output, exist_ok=True) | |
| # disable torch jit as it can cause failure in gradio SDK | |
| # gradio sdk uses torch with cuda 11.3 | |
| torch.jit._state.disable() | |
| # set up | |
| install_dependencies(enable_optimization=args.enable_optimization) | |
| # import after installation | |
| from opensora.datasets import IMG_FPS, save_sample | |
| from opensora.datasets.aspect import get_image_size, get_num_frames | |
| from opensora.models.text_encoder.t5 import text_preprocessing | |
| from opensora.utils.inference_utils import ( | |
| add_watermark, | |
| append_generated, | |
| append_score_to_prompts, | |
| apply_mask_strategy, | |
| collect_references_batch, | |
| dframe_to_frame, | |
| extract_json_from_prompts, | |
| extract_prompts_loop, | |
| get_random_prompt_by_openai, | |
| has_openai_key, | |
| merge_prompt, | |
| prepare_multi_resolution_info, | |
| refine_prompts_by_openai, | |
| split_prompt, | |
| has_openai_key | |
| ) | |
| from opensora.utils.misc import to_torch_dtype | |
| # some global variables | |
| dtype = to_torch_dtype(config.dtype) | |
| device = torch.device("cuda") | |
| # build model | |
| vae, text_encoder, stdit, scheduler = build_models( | |
| args.model_type, config, enable_optimization=args.enable_optimization | |
| ) | |
| def run_inference( | |
| mode, | |
| prompt_text, | |
| resolution, | |
| aspect_ratio, | |
| length, | |
| motion_strength, | |
| aesthetic_score, | |
| use_motion_strength, | |
| use_aesthetic_score, | |
| camera_motion, | |
| reference_image, | |
| refine_prompt, | |
| fps, | |
| num_loop, | |
| seed, | |
| sampling_steps, | |
| cfg_scale, | |
| ): | |
| if prompt_text is None or prompt_text == "": | |
| gr.Warning("Your prompt is empty, please enter a valid prompt") | |
| return None | |
| torch.manual_seed(seed) | |
| with torch.inference_mode(): | |
| # ====================== | |
| # 1. Preparation arguments | |
| # ====================== | |
| # parse the inputs | |
| # frame_interval must be 1 so we ignore it here | |
| image_size = get_image_size(resolution, aspect_ratio) | |
| # compute generation parameters | |
| if mode == "Text2Image": | |
| num_frames = 1 | |
| fps = IMG_FPS | |
| else: | |
| num_frames = config.num_frames | |
| num_frames = get_num_frames(length) | |
| condition_frame_length = int(num_frames / 17 * 5 / 3) | |
| condition_frame_edit = 0.0 | |
| input_size = (num_frames, *image_size) | |
| latent_size = vae.get_latent_size(input_size) | |
| multi_resolution = "OpenSora" | |
| align = 5 | |
| # == prepare mask strategy == | |
| if mode == "Text2Image": | |
| mask_strategy = [None] | |
| elif mode == "Text2Video": | |
| if reference_image is not None: | |
| mask_strategy = ["0"] | |
| else: | |
| mask_strategy = [None] | |
| else: | |
| raise ValueError(f"Invalid mode: {mode}") | |
| # == prepare reference == | |
| if mode == "Text2Image": | |
| refs = [""] | |
| elif mode == "Text2Video": | |
| if reference_image is not None: | |
| # save image to disk | |
| from PIL import Image | |
| im = Image.fromarray(reference_image) | |
| temp_file = NamedTemporaryFile(suffix=".png") | |
| im.save(temp_file.name) | |
| refs = [temp_file.name] | |
| else: | |
| refs = [""] | |
| else: | |
| raise ValueError(f"Invalid mode: {mode}") | |
| # == get json from prompts == | |
| batch_prompts = [prompt_text] | |
| batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy) | |
| # == get reference for condition == | |
| refs = collect_references_batch(refs, vae, image_size) | |
| # == multi-resolution info == | |
| model_args = prepare_multi_resolution_info( | |
| multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype | |
| ) | |
| # == process prompts step by step == | |
| # 0. split prompt | |
| # each element in the list is [prompt_segment_list, loop_idx_list] | |
| batched_prompt_segment_list = [] | |
| batched_loop_idx_list = [] | |
| for prompt in batch_prompts: | |
| prompt_segment_list, loop_idx_list = split_prompt(prompt) | |
| batched_prompt_segment_list.append(prompt_segment_list) | |
| batched_loop_idx_list.append(loop_idx_list) | |
| # 1. refine prompt by openai | |
| if refine_prompt: | |
| # check if openai key is provided | |
| if not has_openai_key(): | |
| gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.") | |
| else: | |
| for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
| batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list) | |
| # process scores | |
| aesthetic_score = aesthetic_score if use_aesthetic_score else None | |
| motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None | |
| camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion | |
| # 2. append score | |
| for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
| batched_prompt_segment_list[idx] = append_score_to_prompts( | |
| prompt_segment_list, | |
| aes=aesthetic_score, | |
| flow=motion_strength, | |
| camera_motion=camera_motion, | |
| ) | |
| # 3. clean prompt with T5 | |
| for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
| batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list] | |
| # 4. merge to obtain the final prompt | |
| batch_prompts = [] | |
| for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list): | |
| batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list)) | |
| # ========================= | |
| # Generate image/video | |
| # ========================= | |
| video_clips = [] | |
| for loop_i in range(num_loop): | |
| # 4.4 sample in hidden space | |
| batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i) | |
| # == loop == | |
| if loop_i > 0: | |
| refs, mask_strategy = append_generated( | |
| vae, video_clips[-1], refs, mask_strategy, loop_i, condition_frame_length, condition_frame_edit | |
| ) | |
| # == sampling == | |
| z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype) | |
| masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align) | |
| # 4.6. diffusion sampling | |
| # hack to update num_sampling_steps and cfg_scale | |
| scheduler_kwargs = config.scheduler.copy() | |
| scheduler_kwargs.pop("type") | |
| scheduler_kwargs["num_sampling_steps"] = sampling_steps | |
| scheduler_kwargs["cfg_scale"] = cfg_scale | |
| scheduler.__init__(**scheduler_kwargs) | |
| samples = scheduler.sample( | |
| stdit, | |
| text_encoder, | |
| z=z, | |
| prompts=batch_prompts_loop, | |
| device=device, | |
| additional_args=model_args, | |
| progress=True, | |
| mask=masks, | |
| ) | |
| samples = vae.decode(samples.to(dtype), num_frames=num_frames) | |
| video_clips.append(samples) | |
| # ========================= | |
| # Save output | |
| # ========================= | |
| video_clips = [val[0] for val in video_clips] | |
| for i in range(1, num_loop): | |
| video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :] | |
| video = torch.cat(video_clips, dim=1) | |
| current_datetime = datetime.datetime.now() | |
| timestamp = current_datetime.timestamp() | |
| save_path = os.path.join(args.output, f"output_{timestamp}") | |
| saved_path = save_sample(video, save_path=save_path, fps=24) | |
| torch.cuda.empty_cache() | |
| # add watermark | |
| # all watermarked videos should have a _watermarked suffix | |
| if mode != "Text2Image" and os.path.exists(WATERMARK_PATH): | |
| watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4") | |
| success = add_watermark(saved_path, WATERMARK_PATH, watermarked_path) | |
| if success: | |
| return watermarked_path | |
| else: | |
| return saved_path | |
| else: | |
| return saved_path | |
| def run_image_inference( | |
| prompt_text, | |
| resolution, | |
| aspect_ratio, | |
| length, | |
| motion_strength, | |
| aesthetic_score, | |
| use_motion_strength, | |
| use_aesthetic_score, | |
| camera_motion, | |
| reference_image, | |
| refine_prompt, | |
| fps, | |
| num_loop, | |
| seed, | |
| sampling_steps, | |
| cfg_scale, | |
| ): | |
| return run_inference( | |
| "Text2Image", | |
| prompt_text, | |
| resolution, | |
| aspect_ratio, | |
| length, | |
| motion_strength, | |
| aesthetic_score, | |
| use_motion_strength, | |
| use_aesthetic_score, | |
| camera_motion, | |
| reference_image, | |
| refine_prompt, | |
| fps, | |
| num_loop, | |
| seed, | |
| sampling_steps, | |
| cfg_scale, | |
| ) | |
| def run_video_inference( | |
| prompt_text, | |
| resolution, | |
| aspect_ratio, | |
| length, | |
| motion_strength, | |
| aesthetic_score, | |
| use_motion_strength, | |
| use_aesthetic_score, | |
| camera_motion, | |
| reference_image, | |
| refine_prompt, | |
| fps, | |
| num_loop, | |
| seed, | |
| sampling_steps, | |
| cfg_scale, | |
| ): | |
| # if (resolution == "480p" and length == "16s") or \ | |
| # (resolution == "720p" and length in ["8s", "16s"]): | |
| # gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory") | |
| # else: | |
| return run_inference( | |
| "Text2Video", | |
| prompt_text, | |
| resolution, | |
| aspect_ratio, | |
| length, | |
| motion_strength, | |
| aesthetic_score, | |
| use_motion_strength, | |
| use_aesthetic_score, | |
| camera_motion, | |
| reference_image, | |
| refine_prompt, | |
| fps, | |
| num_loop, | |
| seed, | |
| sampling_steps, | |
| cfg_scale, | |
| ) | |
| def generate_random_prompt(): | |
| if "OPENAI_API_KEY" not in os.environ: | |
| gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt") | |
| return None | |
| else: | |
| prompt_text = get_random_prompt_by_openai() | |
| return prompt_text | |
| def main(): | |
| # create demo | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.HTML( | |
| """ | |
| <div style='text-align: center;'> | |
| <p align="center"> | |
| <img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/> | |
| </p> | |
| <div style="display: flex; gap: 10px; justify-content: center;"> | |
| <a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a> | |
| <a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a> | |
| <a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a> | |
| <a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a> | |
| <a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a> | |
| <a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a> | |
| <a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a> | |
| </div> | |
| <h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_text = gr.Textbox(label="Prompt", placeholder="Describe your video here", lines=4) | |
| refine_prompt = gr.Checkbox(value=has_openai_key(), label="Refine prompt with GPT4o", interactive=has_openai_key()) | |
| random_prompt_btn = gr.Button("Random Prompt By GPT4o", interactive=has_openai_key()) | |
| gr.Markdown("## Basic Settings") | |
| resolution = gr.Radio( | |
| choices=["144p", "240p", "360p", "480p", "720p"], | |
| value="240p", | |
| label="Resolution", | |
| ) | |
| aspect_ratio = gr.Radio( | |
| choices=["9:16", "16:9", "3:4", "4:3", "1:1"], | |
| value="9:16", | |
| label="Aspect Ratio (H:W)", | |
| ) | |
| length = gr.Radio( | |
| choices=["2s", "4s", "8s", "16s"], | |
| value="2s", | |
| label="Video Length", | |
| info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.", | |
| ) | |
| with gr.Row(): | |
| seed = gr.Slider(value=1024, minimum=1, maximum=2048, step=1, label="Seed") | |
| sampling_steps = gr.Slider(value=30, minimum=1, maximum=200, step=1, label="Sampling steps") | |
| cfg_scale = gr.Slider(value=7.0, minimum=0.0, maximum=10.0, step=0.1, label="CFG Scale") | |
| with gr.Row(): | |
| with gr.Column(): | |
| motion_strength = gr.Slider( | |
| value=5, | |
| minimum=0, | |
| maximum=100, | |
| step=1, | |
| label="Motion Strength", | |
| info="only effective for video generation", | |
| ) | |
| use_motion_strength = gr.Checkbox(value=False, label="Enable") | |
| with gr.Column(): | |
| aesthetic_score = gr.Slider( | |
| value=6.5, | |
| minimum=4, | |
| maximum=7, | |
| step=0.1, | |
| label="Aesthetic", | |
| info="effective for text & video generation", | |
| ) | |
| use_aesthetic_score = gr.Checkbox(value=True, label="Enable") | |
| camera_motion = gr.Radio( | |
| value="none", | |
| label="Camera Motion", | |
| choices=["none", "pan right", "pan left", "tilt up", "tilt down", "zoom in", "zoom out", "static"], | |
| interactive=True, | |
| ) | |
| gr.Markdown("## Advanced Settings") | |
| with gr.Row(): | |
| fps = gr.Slider( | |
| value=24, | |
| minimum=1, | |
| maximum=60, | |
| step=1, | |
| label="FPS", | |
| info="This is the frames per seconds for video generation, keep it to 24 if you are not sure", | |
| ) | |
| num_loop = gr.Slider( | |
| value=1, | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| label="Number of Loops", | |
| info="This will change the length of the generated video, keep it to 1 if you are not sure", | |
| ) | |
| gr.Markdown("## Reference Image") | |
| reference_image = gr.Image(label="Image (optional)", show_download_button=True) | |
| with gr.Column(): | |
| output_video = gr.Video(label="Output Video", height="100%") | |
| with gr.Row(): | |
| image_gen_button = gr.Button("Generate image") | |
| video_gen_button = gr.Button("Generate video") | |
| image_gen_button.click( | |
| fn=run_image_inference, | |
| inputs=[ | |
| prompt_text, | |
| resolution, | |
| aspect_ratio, | |
| length, | |
| motion_strength, | |
| aesthetic_score, | |
| use_motion_strength, | |
| use_aesthetic_score, | |
| camera_motion, | |
| reference_image, | |
| refine_prompt, | |
| fps, | |
| num_loop, | |
| seed, | |
| sampling_steps, | |
| cfg_scale, | |
| ], | |
| outputs=reference_image, | |
| ) | |
| video_gen_button.click( | |
| fn=run_video_inference, | |
| inputs=[ | |
| prompt_text, | |
| resolution, | |
| aspect_ratio, | |
| length, | |
| motion_strength, | |
| aesthetic_score, | |
| use_motion_strength, | |
| use_aesthetic_score, | |
| camera_motion, | |
| reference_image, | |
| refine_prompt, | |
| fps, | |
| num_loop, | |
| seed, | |
| sampling_steps, | |
| cfg_scale, | |
| ], | |
| outputs=output_video, | |
| ) | |
| random_prompt_btn.click(fn=generate_random_prompt, outputs=prompt_text) | |
| # launch | |
| demo.launch(server_port=args.port, server_name=args.host, share=args.share) | |
| if __name__ == "__main__": | |
| main() | |