Spaces:
Build error
Build error
| #!/usr/bin/env python | |
| """ | |
| This script runs a Gradio App for the Open-Sora model. | |
| Usage: | |
| python demo.py <config-path> | |
| """ | |
| import argparse | |
| import importlib | |
| import os | |
| import subprocess | |
| import sys | |
| import re | |
| import json | |
| import math | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| MODEL_TYPES = ["v1.1"] | |
| CONFIG_MAP = { | |
| "v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py", | |
| "v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py", | |
| } | |
| HF_STDIT_MAP = { | |
| "v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2", | |
| "v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3", | |
| } | |
| RESOLUTION_MAP = { | |
| "144p": (144, 256), | |
| "240p": (240, 426), | |
| "360p": (360, 480), | |
| "480p": (480, 858), | |
| "720p": (720, 1280), | |
| "1080p": (1080, 1920) | |
| } | |
| # ============================ | |
| # Utils | |
| # ============================ | |
| def collect_references_batch(reference_paths, vae, image_size): | |
| from opensora.datasets.utils import read_from_path | |
| refs_x = [] | |
| for reference_path in reference_paths: | |
| if reference_path is None: | |
| refs_x.append([]) | |
| continue | |
| ref_path = reference_path.split(";") | |
| ref = [] | |
| for r_path in ref_path: | |
| r = read_from_path(r_path, image_size, transform_name="resize_crop") | |
| r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype)) | |
| r_x = r_x.squeeze(0) | |
| ref.append(r_x) | |
| refs_x.append(ref) | |
| # refs_x: [batch, ref_num, C, T, H, W] | |
| return refs_x | |
| def process_mask_strategy(mask_strategy): | |
| mask_batch = [] | |
| mask_strategy = mask_strategy.split(";") | |
| for mask in mask_strategy: | |
| mask_group = mask.split(",") | |
| assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}" | |
| if len(mask_group) == 1: | |
| mask_group.extend(["0", "0", "0", "1", "0"]) | |
| elif len(mask_group) == 2: | |
| mask_group.extend(["0", "0", "1", "0"]) | |
| elif len(mask_group) == 3: | |
| mask_group.extend(["0", "1", "0"]) | |
| elif len(mask_group) == 4: | |
| mask_group.extend(["1", "0"]) | |
| elif len(mask_group) == 5: | |
| mask_group.append("0") | |
| mask_batch.append(mask_group) | |
| return mask_batch | |
| def apply_mask_strategy(z, refs_x, mask_strategys, loop_i): | |
| masks = [] | |
| for i, mask_strategy in enumerate(mask_strategys): | |
| mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device) | |
| if mask_strategy is None: | |
| masks.append(mask) | |
| continue | |
| mask_strategy = process_mask_strategy(mask_strategy) | |
| for mst in mask_strategy: | |
| loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst | |
| loop_id = int(loop_id) | |
| if loop_id != loop_i: | |
| continue | |
| m_id = int(m_id) | |
| m_ref_start = int(m_ref_start) | |
| m_length = int(m_length) | |
| m_target_start = int(m_target_start) | |
| edit_ratio = float(edit_ratio) | |
| ref = refs_x[i][m_id] # [C, T, H, W] | |
| if m_ref_start < 0: | |
| m_ref_start = ref.shape[1] + m_ref_start | |
| if m_target_start < 0: | |
| # z: [B, C, T, H, W] | |
| m_target_start = z.shape[2] + m_target_start | |
| z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length] | |
| mask[m_target_start : m_target_start + m_length] = edit_ratio | |
| masks.append(mask) | |
| masks = torch.stack(masks) | |
| return masks | |
| def process_prompts(prompts, num_loop): | |
| from opensora.models.text_encoder.t5 import text_preprocessing | |
| ret_prompts = [] | |
| for prompt in prompts: | |
| if prompt.startswith("|0|"): | |
| prompt_list = prompt.split("|")[1:] | |
| text_list = [] | |
| for i in range(0, len(prompt_list), 2): | |
| start_loop = int(prompt_list[i]) | |
| text = prompt_list[i + 1] | |
| text = text_preprocessing(text) | |
| end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop | |
| text_list.extend([text] * (end_loop - start_loop)) | |
| assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}" | |
| ret_prompts.append(text_list) | |
| else: | |
| prompt = text_preprocessing(prompt) | |
| ret_prompts.append([prompt] * num_loop) | |
| return ret_prompts | |
| def extract_json_from_prompts(prompts): | |
| additional_infos = [] | |
| ret_prompts = [] | |
| for prompt in prompts: | |
| parts = re.split(r"(?=[{\[])", prompt) | |
| assert len(parts) <= 2, f"Invalid prompt: {prompt}" | |
| ret_prompts.append(parts[0]) | |
| if len(parts) == 1: | |
| additional_infos.append({}) | |
| else: | |
| additional_infos.append(json.loads(parts[1])) | |
| return ret_prompts, additional_infos | |
| # ============================ | |
| # Runtime Environment | |
| # ============================ | |
| def install_dependencies(enable_optimization=False): | |
| """ | |
| Install the required dependencies for the demo if they are not already installed. | |
| """ | |
| def _is_package_available(name) -> bool: | |
| try: | |
| importlib.import_module(name) | |
| return True | |
| except (ImportError, ModuleNotFoundError): | |
| return False | |
| # flash attention is needed no matter optimization is enabled or not | |
| # because Hugging Face transformers detects flash_attn is a dependency in STDiT | |
| # thus, we need to install it no matter what | |
| if not _is_package_available("flash_attn"): | |
| subprocess.run( | |
| f"{sys.executable} -m pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| if enable_optimization: | |
| # install apex for fused layernorm | |
| if not _is_package_available("apex"): | |
| subprocess.run( | |
| f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git', | |
| shell=True, | |
| ) | |
| # install ninja | |
| if not _is_package_available("ninja"): | |
| subprocess.run(f"{sys.executable} -m pip install ninja", shell=True) | |
| # install xformers | |
| if not _is_package_available("xformers"): | |
| subprocess.run( | |
| f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers", | |
| shell=True, | |
| ) | |
| # ============================ | |
| # Model-related | |
| # ============================ | |
| def read_config(config_path): | |
| """ | |
| Read the configuration file. | |
| """ | |
| from mmengine.config import Config | |
| return Config.fromfile(config_path) | |
| def build_models(model_type, config, enable_optimization=False): | |
| """ | |
| Build the models for the given model type and configuration. | |
| """ | |
| # build vae | |
| from opensora.registry import MODELS, build_module | |
| vae = build_module(config.vae, MODELS).cuda() | |
| # build text encoder | |
| text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32 | |
| text_encoder.t5.model = text_encoder.t5.model.cuda() | |
| # build stdit | |
| # we load model from HuggingFace directly so that we don't need to | |
| # handle model download logic in HuggingFace Space | |
| from transformers import AutoModel | |
| stdit = AutoModel.from_pretrained( | |
| HF_STDIT_MAP[model_type], | |
| enable_flash_attn=enable_optimization, | |
| trust_remote_code=True, | |
| ).cuda() | |
| # build scheduler | |
| from opensora.registry import SCHEDULERS | |
| scheduler = build_module(config.scheduler, SCHEDULERS) | |
| # hack for classifier-free guidance | |
| text_encoder.y_embedder = stdit.y_embedder | |
| # move modelst to device | |
| vae = vae.to(torch.bfloat16).eval() | |
| text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32 | |
| stdit = stdit.to(torch.bfloat16).eval() | |
| # clear cuda | |
| torch.cuda.empty_cache() | |
| return vae, text_encoder, stdit, scheduler | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model-type", | |
| default="v1.1-stage3", | |
| choices=MODEL_TYPES, | |
| help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}", | |
| ) | |
| parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder") | |
| parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.") | |
| parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.") | |
| parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.") | |
| parser.add_argument( | |
| "--enable-optimization", | |
| action="store_true", | |
| help="Whether to enable optimization such as flash attention and fused layernorm", | |
| ) | |
| return parser.parse_args() | |
| # ============================ | |
| # Main Gradio Script | |
| # ============================ | |
| # as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text | |
| # so we can't pass the models to `run_inference` as arguments. | |
| # instead, we need to define them globally so that we can access these models inside `run_inference` | |
| # read config | |
| args = parse_args() | |
| config = read_config(CONFIG_MAP[args.model_type]) | |
| # make outputs dir | |
| os.makedirs(args.output, exist_ok=True) | |
| # disable torch jit as it can cause failure in gradio SDK | |
| # gradio sdk uses torch with cuda 11.3 | |
| torch.jit._state.disable() | |
| # set up | |
| install_dependencies(enable_optimization=args.enable_optimization) | |
| # import after installation | |
| from opensora.datasets import IMG_FPS, save_sample | |
| from opensora.utils.misc import to_torch_dtype | |
| # some global variables | |
| dtype = to_torch_dtype(config.dtype) | |
| device = torch.device("cuda") | |
| # build model | |
| vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization) | |
| def run_inference(mode, prompt_text, resolution, length, reference_image): | |
| with torch.inference_mode(): | |
| # ====================== | |
| # 1. Preparation | |
| # ====================== | |
| # parse the inputs | |
| resolution = RESOLUTION_MAP[resolution] | |
| # compute number of loops | |
| num_seconds = int(length.rstrip('s')) | |
| total_number_of_frames = num_seconds * config.fps / config.frame_interval | |
| num_loop = math.ceil(total_number_of_frames / config.num_frames) | |
| # prepare model args | |
| model_args = dict() | |
| height = torch.tensor([resolution[0]], device=device, dtype=dtype) | |
| width = torch.tensor([resolution[1]], device=device, dtype=dtype) | |
| num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype) | |
| ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype) | |
| if config.num_frames == 1: | |
| config.fps = IMG_FPS | |
| fps = torch.tensor([config.fps], device=device, dtype=dtype) | |
| model_args["height"] = height | |
| model_args["width"] = width | |
| model_args["num_frames"] = num_frames | |
| model_args["ar"] = ar | |
| model_args["fps"] = fps | |
| # compute latent size | |
| input_size = (config.num_frames, *resolution) | |
| latent_size = vae.get_latent_size(input_size) | |
| # process prompt | |
| prompt_raw = [prompt_text] | |
| prompt_raw, _ = extract_json_from_prompts(prompt_raw) | |
| prompt_loops = process_prompts(prompt_raw, num_loop) | |
| video_clips = [] | |
| # prepare mask strategy | |
| if mode == "Text2Video": | |
| mask_strategy = [None] | |
| elif mode == "Image2Video": | |
| mask_strategy = ['0'] | |
| else: | |
| raise ValueError(f"Invalid mode: {mode}") | |
| # ========================= | |
| # 2. Load reference images | |
| # ========================= | |
| if mode == "Text2Video": | |
| refs_x = collect_references_batch([None], vae, resolution) | |
| elif mode == "Image2Video": | |
| # save image to disk | |
| from PIL import Image | |
| im = Image.fromarray(reference_image) | |
| im.save("test.jpg") | |
| refs_x = collect_references_batch(["test.jpg"], vae, resolution) | |
| else: | |
| raise ValueError(f"Invalid mode: {mode}") | |
| # 4.3. long video generation | |
| for loop_i in range(num_loop): | |
| # 4.4 sample in hidden space | |
| batch_prompts = [prompt[loop_i] for prompt in prompt_loops] | |
| z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype) | |
| # 4.5. apply mask strategy | |
| masks = None | |
| # if cfg.reference_path is not None: | |
| if loop_i > 0: | |
| ref_x = vae.encode(video_clips[-1]) | |
| for j, refs in enumerate(refs_x): | |
| if refs is None: | |
| refs_x[j] = [ref_x[j]] | |
| else: | |
| refs.append(ref_x[j]) | |
| if mask_strategy[j] is None: | |
| mask_strategy[j] = "" | |
| else: | |
| mask_strategy[j] += ";" | |
| mask_strategy[ | |
| j | |
| ] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}" | |
| masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i) | |
| # 4.6. diffusion sampling | |
| samples = scheduler.sample( | |
| stdit, | |
| text_encoder, | |
| z=z, | |
| prompts=batch_prompts, | |
| device=device, | |
| additional_args=model_args, | |
| mask=masks, # scheduler must support mask | |
| ) | |
| samples = vae.decode(samples.to(dtype)) | |
| video_clips.append(samples) | |
| # 4.7. save video | |
| if loop_i == num_loop - 1: | |
| video_clips_list = [ | |
| video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :] | |
| for i in range(1, num_loop) | |
| ] | |
| video = torch.cat(video_clips_list, dim=1) | |
| save_path = f"{args.output}/sample" | |
| saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True) | |
| return saved_path | |
| def main(): | |
| # create demo | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.HTML( | |
| """ | |
| <div style='text-align: center;'> | |
| <p align="center"> | |
| <img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/> | |
| </p> | |
| <div style="display: flex; gap: 10px; justify-content: center;"> | |
| <a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a> | |
| <a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a> | |
| <a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a> | |
| <a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a> | |
| <a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a> | |
| <a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a> | |
| <a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a> | |
| </div> | |
| <h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| mode = gr.Radio( | |
| choices=["Text2Video", "Image2Video"], | |
| value="Text2Video", | |
| label="Usage", | |
| info="Choose your usage scenario", | |
| ) | |
| prompt_text = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Describe your video here", | |
| lines=4, | |
| ) | |
| resolution = gr.Radio( | |
| choices=["144p", "240p", "360p", "480p", "720p", "1080p"], | |
| value="144p", | |
| label="Resolution", | |
| ) | |
| length = gr.Radio( | |
| choices=["2s", "4s", "8s"], | |
| value="2s", | |
| label="Video Length", | |
| info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time." | |
| ) | |
| reference_image = gr.Image( | |
| label="Reference Image (only used for Image2Video)", | |
| ) | |
| with gr.Column(): | |
| output_video = gr.Video( | |
| label="Output Video", | |
| height="100%" | |
| ) | |
| with gr.Row(): | |
| submit_button = gr.Button("Generate video") | |
| submit_button.click( | |
| fn=run_inference, | |
| inputs=[mode, prompt_text, resolution, length, reference_image], | |
| outputs=output_video | |
| ) | |
| # launch | |
| demo.launch(server_port=args.port, server_name=args.host, share=args.share) | |
| if __name__ == "__main__": | |
| main() | |