Changed usage
Browse files
app.py
CHANGED
|
@@ -1,20 +1,21 @@
|
|
| 1 |
from flask import Flask, request, jsonify, render_template_string
|
| 2 |
import os
|
|
|
|
| 3 |
import torch
|
| 4 |
from detoxify import Detoxify
|
| 5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 6 |
|
| 7 |
app = Flask(__name__)
|
| 8 |
|
| 9 |
-
#
|
| 10 |
detoxify_model = Detoxify('multilingual')
|
| 11 |
koala_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/Text-Moderation")
|
| 12 |
koala_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/Text-Moderation")
|
| 13 |
|
| 14 |
-
# API key
|
| 15 |
API_KEY = os.getenv('API_KEY')
|
| 16 |
|
| 17 |
-
# Modern
|
| 18 |
HTML_TEMPLATE = '''
|
| 19 |
<!DOCTYPE html>
|
| 20 |
<html lang="en">
|
|
@@ -55,7 +56,7 @@ HTML_TEMPLATE = '''
|
|
| 55 |
method: 'POST',
|
| 56 |
headers: {
|
| 57 |
'Content-Type': 'application/json',
|
| 58 |
-
'Authorization': 'Bearer YOUR_API_KEY' //
|
| 59 |
},
|
| 60 |
body: JSON.stringify({ model: model, texts: [text] })
|
| 61 |
});
|
|
@@ -67,10 +68,11 @@ HTML_TEMPLATE = '''
|
|
| 67 |
let html = '<h2 class="text-2xl font-bold mb-4">Results:</h2>';
|
| 68 |
data.results.forEach(item => {
|
| 69 |
html += `<div class="mb-4 p-4 bg-gray-200 dark:bg-gray-700 rounded">
|
| 70 |
-
<p class="font-semibold">
|
|
|
|
| 71 |
<ul>`;
|
| 72 |
-
for (const [key, value] of Object.entries(item.
|
| 73 |
-
html += `<li>${key}: ${value.toFixed(5)}</li>`;
|
| 74 |
}
|
| 75 |
html += ` </ul>
|
| 76 |
</div>`;
|
|
@@ -86,13 +88,53 @@ HTML_TEMPLATE = '''
|
|
| 86 |
</html>
|
| 87 |
'''
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
@app.route('/')
|
| 90 |
def home():
|
| 91 |
return render_template_string(HTML_TEMPLATE)
|
| 92 |
|
| 93 |
@app.route('/v1/moderations', methods=['POST'])
|
| 94 |
def moderations():
|
| 95 |
-
#
|
| 96 |
auth_header = request.headers.get('Authorization')
|
| 97 |
if not auth_header or not auth_header.startswith("Bearer "):
|
| 98 |
return jsonify({"error": "Unauthorized"}), 401
|
|
@@ -108,29 +150,45 @@ def moderations():
|
|
| 108 |
return jsonify({"error": "Invalid input, expected a list of texts"}), 400
|
| 109 |
|
| 110 |
results = []
|
|
|
|
| 111 |
if model_choice == "koalaai/text-moderation":
|
| 112 |
for text in texts:
|
| 113 |
inputs = koala_tokenizer(text, return_tensors="pt")
|
| 114 |
outputs = koala_model(**inputs)
|
| 115 |
logits = outputs.logits
|
| 116 |
probabilities = torch.softmax(logits, dim=-1).squeeze().tolist()
|
|
|
|
| 117 |
if isinstance(probabilities, float):
|
| 118 |
probabilities = [probabilities]
|
| 119 |
labels = [koala_model.config.id2label[idx] for idx in range(len(probabilities))]
|
| 120 |
prediction = {label: prob for label, prob in zip(labels, probabilities)}
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
response_model = "koalaai/text-moderation"
|
| 123 |
else:
|
| 124 |
for text in texts:
|
| 125 |
pred = detoxify_model.predict([text])
|
|
|
|
| 126 |
prediction = {k: v[0] for k, v in pred.items()}
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
response_model = "unitaryai/detoxify-multilingual"
|
| 129 |
|
| 130 |
response_data = {
|
| 131 |
-
"
|
| 132 |
"model": response_model,
|
| 133 |
-
"results": results
|
|
|
|
| 134 |
}
|
| 135 |
return jsonify(response_data)
|
| 136 |
|
|
|
|
| 1 |
from flask import Flask, request, jsonify, render_template_string
|
| 2 |
import os
|
| 3 |
+
import uuid
|
| 4 |
import torch
|
| 5 |
from detoxify import Detoxify
|
| 6 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 7 |
|
| 8 |
app = Flask(__name__)
|
| 9 |
|
| 10 |
+
# Modelleri yükle
|
| 11 |
detoxify_model = Detoxify('multilingual')
|
| 12 |
koala_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/Text-Moderation")
|
| 13 |
koala_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/Text-Moderation")
|
| 14 |
|
| 15 |
+
# API key environment variable'dan
|
| 16 |
API_KEY = os.getenv('API_KEY')
|
| 17 |
|
| 18 |
+
# Modern, TailwindCSS destekli HTML arayüzü (dark/light)
|
| 19 |
HTML_TEMPLATE = '''
|
| 20 |
<!DOCTYPE html>
|
| 21 |
<html lang="en">
|
|
|
|
| 56 |
method: 'POST',
|
| 57 |
headers: {
|
| 58 |
'Content-Type': 'application/json',
|
| 59 |
+
'Authorization': 'Bearer YOUR_API_KEY' // Değiştir!
|
| 60 |
},
|
| 61 |
body: JSON.stringify({ model: model, texts: [text] })
|
| 62 |
});
|
|
|
|
| 68 |
let html = '<h2 class="text-2xl font-bold mb-4">Results:</h2>';
|
| 69 |
data.results.forEach(item => {
|
| 70 |
html += `<div class="mb-4 p-4 bg-gray-200 dark:bg-gray-700 rounded">
|
| 71 |
+
<p class="font-semibold">Flagged: ${item.flagged}</p>
|
| 72 |
+
<p class="font-semibold">Categories:</p>
|
| 73 |
<ul>`;
|
| 74 |
+
for (const [key, value] of Object.entries(item.categories)) {
|
| 75 |
+
html += `<li>${key}: ${value} (score: ${item.category_scores[key].toFixed(5)})</li>`;
|
| 76 |
}
|
| 77 |
html += ` </ul>
|
| 78 |
</div>`;
|
|
|
|
| 88 |
</html>
|
| 89 |
'''
|
| 90 |
|
| 91 |
+
def transform_predictions(model_choice, prediction_dict):
|
| 92 |
+
"""
|
| 93 |
+
OpenAI tarzı response formatı için tahminleri dönüştür.
|
| 94 |
+
Dönüştürülen alanlar: flagged, categories, category_scores, category_applied_input_types
|
| 95 |
+
"""
|
| 96 |
+
# OpenAI'nın moderasyon API'sinde kullanılan kategori anahtarları
|
| 97 |
+
category_keys = [
|
| 98 |
+
"sexual", "sexual/minors", "harassment", "harassment/threatening",
|
| 99 |
+
"hate", "hate/threatening", "illicit", "illicit/violent",
|
| 100 |
+
"self-harm", "self-harm/intent", "self-harm/instructions",
|
| 101 |
+
"violence", "violence/graphic"
|
| 102 |
+
]
|
| 103 |
+
scores = {}
|
| 104 |
+
# Detoxify modeli için örnek eşleştirme:
|
| 105 |
+
if model_choice == "unitaryai/detoxify-multilingual":
|
| 106 |
+
scores["sexual"] = prediction_dict.get("sexual_explicit", 0.0)
|
| 107 |
+
scores["harassment"] = max(prediction_dict.get("identity_attack", 0.0), prediction_dict.get("insult", 0.0))
|
| 108 |
+
scores["hate"] = prediction_dict.get("toxicity", 0.0)
|
| 109 |
+
scores["violence"] = max(prediction_dict.get("severe_toxicity", 0.0), prediction_dict.get("threat", 0.0))
|
| 110 |
+
# Diğer kategoriler için varsayılan 0 değeri
|
| 111 |
+
for key in category_keys:
|
| 112 |
+
if key not in scores:
|
| 113 |
+
scores[key] = 0.0
|
| 114 |
+
else:
|
| 115 |
+
# Koala modelinden gelen tahminlerde, label isimleri doğrudan uyumlu olabilir;
|
| 116 |
+
# uyumlu değilse varsayılan 0 değeri ver.
|
| 117 |
+
for key in category_keys:
|
| 118 |
+
scores[key] = prediction_dict.get(key, 0.0)
|
| 119 |
+
|
| 120 |
+
# Kategori boolean değerleri; eşik değeri: 0.7
|
| 121 |
+
threshold = 0.7
|
| 122 |
+
bool_categories = {key: (scores[key] > threshold) for key in category_keys}
|
| 123 |
+
# category_applied_input_types: biz text ile çalıştığımız için, skor > 0 ise ["text"] değilse boş liste
|
| 124 |
+
cat_applied_input_types = {key: (["text"] if scores[key] > 0 else []) for key in category_keys}
|
| 125 |
+
|
| 126 |
+
# Flagged: herhangi bir kategori eşik değerinin üzerinde ise True
|
| 127 |
+
flagged = any(bool_categories.values())
|
| 128 |
+
|
| 129 |
+
return flagged, bool_categories, scores, cat_applied_input_types
|
| 130 |
+
|
| 131 |
@app.route('/')
|
| 132 |
def home():
|
| 133 |
return render_template_string(HTML_TEMPLATE)
|
| 134 |
|
| 135 |
@app.route('/v1/moderations', methods=['POST'])
|
| 136 |
def moderations():
|
| 137 |
+
# Authorization header'dan API key kontrolü
|
| 138 |
auth_header = request.headers.get('Authorization')
|
| 139 |
if not auth_header or not auth_header.startswith("Bearer "):
|
| 140 |
return jsonify({"error": "Unauthorized"}), 401
|
|
|
|
| 150 |
return jsonify({"error": "Invalid input, expected a list of texts"}), 400
|
| 151 |
|
| 152 |
results = []
|
| 153 |
+
# Her bir metin için tahmin ve transform işlemi
|
| 154 |
if model_choice == "koalaai/text-moderation":
|
| 155 |
for text in texts:
|
| 156 |
inputs = koala_tokenizer(text, return_tensors="pt")
|
| 157 |
outputs = koala_model(**inputs)
|
| 158 |
logits = outputs.logits
|
| 159 |
probabilities = torch.softmax(logits, dim=-1).squeeze().tolist()
|
| 160 |
+
# Eğer tek değer ise listeye çevir
|
| 161 |
if isinstance(probabilities, float):
|
| 162 |
probabilities = [probabilities]
|
| 163 |
labels = [koala_model.config.id2label[idx] for idx in range(len(probabilities))]
|
| 164 |
prediction = {label: prob for label, prob in zip(labels, probabilities)}
|
| 165 |
+
flagged, bool_categories, scores, cat_applied_input_types = transform_predictions(model_choice, prediction)
|
| 166 |
+
results.append({
|
| 167 |
+
"flagged": flagged,
|
| 168 |
+
"categories": bool_categories,
|
| 169 |
+
"category_scores": scores,
|
| 170 |
+
"category_applied_input_types": cat_applied_input_types
|
| 171 |
+
})
|
| 172 |
response_model = "koalaai/text-moderation"
|
| 173 |
else:
|
| 174 |
for text in texts:
|
| 175 |
pred = detoxify_model.predict([text])
|
| 176 |
+
# Detoxify sonuçları liste formatında, tek değer alıyoruz
|
| 177 |
prediction = {k: v[0] for k, v in pred.items()}
|
| 178 |
+
flagged, bool_categories, scores, cat_applied_input_types = transform_predictions(model_choice, prediction)
|
| 179 |
+
results.append({
|
| 180 |
+
"flagged": flagged,
|
| 181 |
+
"categories": bool_categories,
|
| 182 |
+
"category_scores": scores,
|
| 183 |
+
"category_applied_input_types": cat_applied_input_types
|
| 184 |
+
})
|
| 185 |
response_model = "unitaryai/detoxify-multilingual"
|
| 186 |
|
| 187 |
response_data = {
|
| 188 |
+
"id": "modr-" + uuid.uuid4().hex[:24],
|
| 189 |
"model": response_model,
|
| 190 |
+
"results": results,
|
| 191 |
+
"object": "moderation"
|
| 192 |
}
|
| 193 |
return jsonify(response_data)
|
| 194 |
|